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Abstract The RrscAL Visual Object Classes (VOC) chal- 1 Introduction

lenge is a benchmark in visual object category recognition

and detection, providing the vision and machine learningrhe RscaL? Visual Object Classes (VOC) Challenge con-
communities with a standard dataset of images and anneists of two components: (i) a publicly availabdataset
tation, and standard evaluation procedures. Organisagt annof images and annotation, together with standardised eval-
ally from 2005 to present, the challenge and its associatedation software; and (ii) an annuebmpetitionand work-

dataset has become acceptedtasbenchmark for object

detection.

shop. The VOC2007 dataset consists of annotated con-
sumer photographs collected from the iégphoto-sharing
web-site. A new dataset with ground truth annotation has

This paper describes the dataset and evaluation procbeen released each year since 2006. There are two prin-

dure. We review the state-of-the-art in evaluated methads f cipal challengesclassi cation — “does the image contain
both classi cation and detection, analyse whether the methany instances of a particular object class?” (where the ob-
ods are statistically different, what they are learningrfithe  ject classes include cars, people, dogs, etc), detdction
images (e.g. the object or its context), and what the meth- “where are the instances of a particular object class in
ods nd easy or confuse. The paper concludes with lessorigie image (if any)?”. In addition, there are two subsidiary
learnt in the three year history of the challenge, and pregpos challenges (“tasters”) on pixel-level segmentation —grssi
directions for future improvement and extension. each pixel a class label, and “person layout” — localise the
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head, hands and feet of people in the image. The challenges
are issued with deadlines each year, and a workshop held
to compare and discuss that year's results and methods. The
datasets and associated annotation and software are subse-
quently released and available for use at any time.

The objectives of the VOC challenge are twofold: rst
to provide challenging images and high quality annotation,
together with a standard evaluation methodology — a “plug
and play” training and testing harness so that performance
of algorithms can be compared (the dataset component); and
second to measure the state of the art each year (the compe-
tition component).

The purpose of this paper is to describe the challenge:
what it is, and the reasons for the way it is. We also describe
the methods, results and evaluation of the challenge, and so

1 PascAL stands for pattern analysis, statistical modelling and com-
putational learning. It is an EU Network of Excellence fuddender
the IST Programme of the European Union.

2 http://www.flickr.com/



in that respect are describing the state-of-the-art inabje Many object categories are labelled, with annotation con-
recognition (at least as measured for these challengesyand bisting of a bounding polygon and category, with some ob-
those who entered). We focus mainly on the 2007 challenggects additionally being labelled with pose and object part
as this is the most recent, but also discuss signi cant ceang For the most part the datasetiieompletelylabelled — vol-
since earlier challenges and why these were made. unteers are free to choose which objects to annotate, and
which to omit. This means that, while a very valuable re-
source for training images, the dataset is unsuitable &b te
1.1 Relation to other Datasets ing in the manner of the VOC challenge since precision and
recall cannot accurately be estimated. Recently the LabelM
Challenge datasets are important in many areas of researgfyanisers have proposed subsets of the database to use for
in order to set goals for methods, and to allow comparison ofraining and testing, which are completely annotated with a
their performance. Similar datasets and evaluation methoget of seven object (person, car) and “stuff” (building,,sky
ologies are sprouting in other areas of computer vision angtc.) classes. However, no evaluation protocol is speci ed
machine learning, e.g. the Middlebury datasets for stereo,
MRF optimisation, and optical ow comparison (Scharstein

andlns ZaeollIo?ii':ilozno?o2 )6rganised challenges, there are sever jhe "TREC Video R_etrieval_ Evaluation(TRECVlD3, .
datasets contributed by the vision Comm,unity which are ree_gmeaton ?t al (2006))is also similar to '.[he VOC challenge in
lated to that collected for the VOC challenges that there is a new dataset and competition each year, though
‘ the dataset is only available to participants and is not pub-
o ~licly distributed. TRECVID includes several tasks, but the
The “Caltech 101" dataset (Fei-Fei et al 2006) contains one most related to VOC is termed “high-level feature ex-
images of 101 categories of object, and is relatively widelyyaction”, and involves returning a ranked list of video tho
used within the community for evaluating object recogni-for speci ed “features”. For the 2008 competition these-fea
tion. Each image contains only a single object. A principalyres include scene categories (such as classroom, giysca
aim of the Caltech datasets is to evaluate multi-category oy, harbour), object categories (such as dog, aeroplane y-
ject recognition, as a function of the (relatively smallymujnq or telephone) and actions/events (such as a demonstra-
ber of training images. This is complementary to the aimstion/protest). Annotation is not provided by the orgarsser
of the VOC challenge, which measures performance on g some is usually distributed amongst the participarite. T
smaller number of classes and without such constraints ogbmissions are scored by their Average Precision (AP). The
the amount of training data available. evaluation of the ranked lists is carried out by the organis-
A common criticism of this dataset, addressed by theys ysing a mixture of ground truth labelling and “inferred
VOC challenge, is that the images are largely without ciutte ground truth” (Yilmaz and Aslam 2006) obtained from high

variation in pose is limited, and the images have been manzked results returned by the participants’ methods.
ually aligned to reduce the variability in appearance. €hes

factors make the dataset less applicable to “real worldl-eva

uation than the images provided for the VOC challenge. ) i
The Lotus Hill dataset(Yao et al 2007) is a large, recently

produced dataset, a small part of which is made freely avail-

The C?Itﬁ CZ 25,6 d_ataselit éGIr'f nheltoall 20h07) c;orrected _able to researchers. It contains 8 data subsets with a rdnge o
Someo t € deciencies ort-a tec _,t Ere 1S MOre Varly, nnotation. Particularly we highlight (a) annotationsvide
ability in size and localisation, and obvious artifacts dnav

o ing a hierarchical decomposition of individual objects.e.g
been removed. The number of classes is increased (from 10%hicles (@ classes, 209 imadgsother man-made objects
to 256) and the aim is still to investigate multi-category ob (75 classes, 750 images) and animals (40 classes, 400 im-
ject recognition with a limited number of training images. ages); and (b) segmentation labelling of scenes to a pixel
For the_ most part there is onlyasmglg object per n:pag-e— Rvel (444 images). As this dataset has only recently been
Is required to support thg 1_—<m‘+evaluat|o.n af?'OPted (‘which released there has not yet been a lot of work reported on it.
one ofm classes does this image contain?”). The datasets look to have a useful level of annotation (es-
pecially with regard to hierarchical decompositions which
The “LabelMe” dataset (Russell et al 2008) at MIT is  have not been attempted elsewhere), but are somewhat lim-

most similar to the VOC challenge dataset in that it con4ted by the number of images that are freely available.
tains more-or-less general photographs containing neiltip

objects. LabelMe has: begn ground—breakmg in providing s hitp:/fwww-nipir.nist.goviprojectsitrecvic
a Web'pased annota.tlon |nterfa?e, encouraging casual .and The number of images quoted is the number that are freely avail-
professional users alike to contribute and share annatatioable.




1.2 Paper layout to tackle all, or any subset of object classes. Two compe-

titions are de ned in a similar manner to the classi cation
This paper is organised as follows: we start with a summarghallenge.

of the four challenges in Sect. 2, then describe in more de-

tail in Sect. 3 the datasets — their method of collection; the

classes included and the motivation for including them; an@®.3 Segmentation Taster

their annotation and statistics. Sect. 4 describes thei@val

tion procedure and why this procedure was chosen. Sect.For each test image, predict the object class of each pixel,
overviews the main methods used in the 2007 challenger “background” if the object does not belong to one of the
for classi cation and detection, and Sect. 6 reports and distwenty speci ed classes. Unlike the classi cation and dete
cusses the results. This discussion includes an analysis tén challenges there is only one competition, where trajni
the statistical signi cance of the performances of theatiff ~data is restricted to that provided by the challenge.

ent methods, and also of which object classes and images

the methods nd easy or dif cult. We conclude with a dis-

cussion of the merits, and otherwise, of the VOC challeng@.4 Person Layout Taster

and possible options for the future.
For each “person” object in a test image (if any), detect the

person, predicting the bounding box of the person, the pres-
2 Challenge Tasks ence/absence of parts (head/hands/feet), and the bounding
boxes of those parts. Each person detection should be out-
This section gives an overview of the two principal chal-put with an associated real-valued con dence. Two compe-
lenge tasks omlassi cation and detection and on the two titions are de ned in a similar manner to the classi cation
subsidiary tasks (“tasters”) on pixel-level segmentataord  challenge.
“person layout”.

3 Datasets
2.1 Classi cation
The goal of the VOC challenge is to investigate the perfor-
For each of twenty object classes, predict the presmance of recognition methods on a wide spectrum of natu-
ence/absence of at least one object of that class in a testl images. To this end, it is required that the VOC datasets
image. Participants are required to provide a real-valuedontain signi cant variability in terms of object size, eri-
con dence of the object's presence for each test image station, pose, illumination, position and occlusion. It isea
that a precision/recall curve can be drawn. Participants maimportant that the datasets do not exhibit systematic bias,
choose to tackle all, or any subset of object classes, for efer example, favouring images with centred objects or good
ample “cars only” or “motorbikes and cars”. illumination. Similarly, to ensure accurate training andle
Two competitions are de ned according to the choiceuation, it is necessary for the image annotations to be con-
of training data: (1) taken from the VOC training/validatio sistent, accurate and exhaustive for the specied classes.
data provided, or (2) from any source excluding the VOCThis section describes the processes used for collectithg an
test data. In the rst competition, any annotation providedannotating the VOC2007 datasets, which were designed to
in the VOC training/validation data may be used for train-achieve these aims.
ing, for example bounding boxes or particular views e.g.
“frontal” or “left”. Participants arenot permitted to perform
additional manual annotation of either training or testdat 3.1 Image Collection Procedure
In the second competition, any source of training data may
be usedexceptthe provided test images. The second comFor the 2007 challenge, all images were collected from the
petition is aimed at researchers who have pre-built systemigkr photo-sharing web-site. The use of personal photos
trained on other data, and is a measure of the state-ofrthe-awhich were not taken by, or selected by, vision/machine
learning researchers results in a very “unbiased” dataset,
the sense that the photos are not taken with a particular pur-
2.2 Detection pose in mind i.e. object recognition research. Qualitdtive
the images contain a very wide range of viewing conditions
For each of the twenty classes, predict the bounding boxgpose, lighting, etc.) and images where there is little bias
of each object of that class in a test image (if any), withward images being “of” a particular object, e.g. there are im
associated real-valued con dence. Participants may @hoosages of motorcycles in a street scene, rather than solely im-
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Fig. 1 Example images from the VOC2007 dataset. For each of the 20 ckassetated, two examples are shown. Bounding boxes indidate al
instances of the corresponding class in the image which are mask&wbn-dif cult” (see Sect. 3.3) — bounding boxes for theetklasses are
available in the annotation but not shown. Note the wide rarfig®se, scale, clutter, occlusion and imaging conditions.



ages where a motorcycle is the focus of the picture. The arrable 1 Queries used to retrieve images from ickr. Words in bold
notation guidelines (Winn and Everingham 2007) providedshow the “targeted” class. Note that the query terms are quitergen
guidance to annotators on which images to annotate — e§]_|nclud|n_g t_he class name, synonyms and scenes or situations where
. . . - e class is likely to occur.
sentially everything which could be annotated with con -
dence. The use of a single source of “consumer” images ad- . . )
. . — aeroplane airplane, plane, biplane, monoplane, aviator, bomber,
dressed problems encountered in previous challenges, such pyqroplane, airliner, aircraft, ghter, airport, hangat, boeing,
as in YOC2006 where images from the Microsoft Research fuselage, wing, propellor, ying
Cambridge database (Shotton et al 2006) were included- bgcyclehbilj?,CyclevaC”St, pedal, tandem, saddle, wheel, cycling,
H H H riae, wheelie
The MSF\.) Cambrldge |m§ges were taken with the pyrpqse_ bird, birdie, birdwatching, nest, sea, aviary, birdcage, birdiése
of capturing particular object classes, so that the objecti g taple,
stances tend to be large, well-illuminated and central. The— boatship, barge, ferry, canoe, boating, craft, liner, cruisejrgil
use of anautomatedcollection method also prevented any ~ rowing, watercraft, regatta, racing, marina, beach, watenal,
selection bias being introduced by a researcher manually Ve stream. lake, yacht,
Lo . “ i . — bottle, cork, wine, beer, champagne, ketchup, squash, soda, coke,
performing image selection. The “person” category proside  |emonade. dinner, lunch, breakfast
a vivid example of how the adopted collection methodology — bus omnibus, coach, shuttle, jitney, double-decker, motorbus,
leads to high variability; in previous datasets “person’swa school bus, depot, terminal, station, terminus, passenger, route
essentially synonymous with “pedestrian”, whereas in the ~ car, automobile, cruiser, motorcar, vehicle, hatchback, saloon,
. ’ . . convertible, limousine, motor, race, traf c, trip, rally, gitstreet,
VOC dataset we have images of people engaged in a wide road, lane, village, town, centre, shopping, downtown, dedour

range of activities such as walking, riding horses, sittng - cat, feline, pussy, mew, kitten, tabby, tortoiseshell, ginger, stray
buses, etc. (see Fig. 1). — chair, seat, rocker, rocking, deck, swivel, camp, chaise, of ce, stu-

. . . dio, armchair, recliner, sitting, lounge, living room, sittirmpm
In total, 500,000 images were retrieved from ickr. For cow, beef, heifer, moo, dairy, milk, milking, farm

each of the 20 object classes to be annotated (see Fig. 1), dog hound, bark, kennel, heel, bitch, canine, puppy, huntdarc
images were retrieved by querying ickr with a number of  leash
related keywords (Table 1). No other query criteria, e.geda — Norse gallop, jump, buck, equine, foal, cavalry, saddle, canter,
. . buggy, mare, neigh, dressage, trial, racehorse, steeplechase, th
of capture,. phOFOQrapherS name, etc. were speci ed — we oughbred, cart, equestrian, paddock, stable, farrier
return to this point below. — motorbike, motorcycle, minibike, moped, dirt, pillion, biker,
For a given query, ickr is asked for 100,000 matching trials, motorcycling, motorcyclist, engine, motocross, scramble,

; ; ; “ w o sidecar, scooter, trail
images (ickr organises search results as “pages” i.e. 100_ o " oot i tather, mother, brother, sister, aunt, uncle,

pages of 1,000 matches). An image is chosen at random grandmother, grandma, grandfather, grandpa, grandson, -grand
from the returned set and downloaded along with the corre-  daughter, niece, nephew, cousin
sponding metadata. A new query is then selected at random; sheepram, fold, eece, shear, baa, bleat, lamb, ewe, wool, ock
and the process is repeated until suf cient images have beeri” 30fa chester eld, settee, divan, couch, bolster
; — table, dining, cafe, restaurant, kitchen, banquet, party, meal

downloaded. Images were downloaded for each class in par- potted plant, pot plant, plant, patio, windowsill, window sill, yard,
allel using a python interface to the ickr API, with no re- greenhouse, glass house, basket, cutting, pot, cooking, grow
striction on the number of images per class or query. Thanks— train, express, locomotive, freight, commuter, platform, subway,
to ickr's fast servers, downloading the entire image setko underground, steam, railway, railroad, rail, tube, undamd
. ) 8 track, carriage, coach, metro, sleeper, railcar, buffetincaével
just a few hours on a single machine. crossing

Table 1 lists the queries used for each of the classes,- tv, monitor, television, plasma, atscreen, at screen, lcd, crt,
produced by “free association” from the target classes. It watching, dvd, desktop, computer, computer monitor, PC, console
might appear that the use of keyword queries would bias game
the images to pictures “of” an object, however the wide
range of keywords used reduces this likelihood; for exam-
ple the query “living room” can be expected to return scenes
containing chairs, sofas, tables, dtccontext or the query  ©f (Chum et al 2007). Near duplicate images are those that
“town centre” to return scenes containing cars, motoreycle are perceptually similar, but differ in their levels of com-
pedestrians, etc. It is worth noting, however, that withoutPression, or by small photometric distortions or occlusion
using any keyword queries the images retrieved random[§Pr example.
from ickr were, subjectively, found to be overwhelmingly  After de-duplication, random images from the set of
“party” scenes containing predominantly people. We returr500,000 were presented to the annotators for annotation.
to the problem of obtaining suf cient examples of “minor- During the annotation event, 44,269 images were considered
ity” object classes in Sect. 7.1. for annotation, being either annotated or discarded as un-

All exact duplicate and “near duplicate” images were re-suitable for annotation e.g. containing no instances o2the
moved from the downloaded image set, using the methodbject classes, according to the annotation guidelinearfWi



and Everingham 2007), or being impossible to annotate cor- Obiects

reCtIy and Completely Wlth con dence' VehirI:Ies Houslehold Al in|1als Persont
One small bias was discovered in the VOC2007 dataset |—swheeled —Furniture —Domestic
due to the image collection procedure — ickr returns query Cart [—Seating Cat?
results ranked by “recency” such that if a given query is sat- _z_wh::;: z:z’: _FarmS:riz
is ed by many images, more recentimages are returned rst. Bicycle 1 Dining table 3 Cow?
Since the images were collected in January 2007, this led to Motorbike 1 [—TVv/monitor 3 Horse?
an above-average number of Christmas/winter images con- [—Aeroplane * —Bottle 3 Sheep?
taining, for example, large numbers of Christmas trees. To _:‘:’::3 —Potted plant * —Bird?
— |

avoid such bias in VOC2008images have been retrieved

using queries comprising a random date in addition to I(eyThe year of inclusion of each class in the challenge is inditate

words. superscripts: 2005 2008, 2002. The classes can be considered in
a notional taxonomy, with successive challenges adding nevebean
(increasing the domain) and leaves (increasing detail).

Fig. 2 VOC2007 Classes. Leaf nodes correspond to the 20 classes.

3.2 Choice of Classes
which show promise in solving the scaling of object recog-

Fig. 2 shows the 20 classes selected for annotation in thation to many thousands of classes: (i) exploiting visual
VOC2007 dataset. As shown, the classes can be considerptbperties common to classes e.g. vehicle wheels, for ex-
in a taxonomy with four main branches — vehicles, animalsample in the form of “feature sharing” (Torralba et al 2007);
household objects and peofléhe gure also shows the (i) exploiting external semantic information about théare
year of the challenge in which a particular class was intions between object classes e.g. WordNet (Fellbaum 1998),
cluded. In the original VOC2005 challenge (Everinghamfor example by learning a hierarchy of classi ers (Marsza-
et al 2006a), which used existing annotated datasets, folek and Schmid 2007). The availability of a class hierarchy
classes were annotated (car, motorbike, bicycle and persormay also prove essential in future evaluation efforts if the
This number was increased to 10 in VOC2006, and 20 imumber of classes increases to the extent that there is im-
VOC2007. plicit ambiguity in the classes, allowing individual objeto

Over successive challenges the set of classes has bele@ annotated at different levels of the hierarchy e.g. hatch
expanded in two ways: First, ner-grain “sub-classes” haveback/car/vehicle. We return to this point in Sect. 7.3.
been added e.g. “bus”. The choice of sub-classes has been
motivated by (i) increasing the “semantic” speci city ofeh
output required of systems, for example recognising differ

e_nt types_ OT vehu_:_le_ €.g. c:_;lr/motorl_)lke (which may not be1n order to evaluate the classi cation and detection chal-
visually similar); (ii) increasing the dif culty of the dizim- lenges, the image annotation includes the following at-

ination task by inclusion of objects which might be consid-, . S .
. . .. tributes for every object in the target set of object classe
ered visually similar e.g. “cat” vs. “dog”. Second, additad foutes for every object! rgets ) ses

branches of the notional taxonomy have been added e.g. “an= class:one of: aeroplane, bird, bicycle, boat, bottle, bus,
imals” (VOC2006) and “household objects” (VOC2007).  car, cat, chair, cow, dining table, dog, horse, motorbike,
The motivations are twofold: (i) increasing the domain of ~ Person, potted plant, sheep, sofa, train, tv/monitor.
the challenge in terms of the semantic range of objects cov-— bounding box:an axis-aligned bounding box surround-
ered; (i) encouraging research on object classes not widel ~ ing the extent of the object visible in the image.
addressed because of visual properties which are challeng- The choice of an axis aligned bounding-box for the an-
ing for current methods, e.g. animals which might be connotation is a compromise: for some object classes it tsejuit
sidered to lack highly distinctive parts (c.f. car wheets)d  well (e.g. to a horizontal bus or train) with only a small pro-
chairs which are de ned functionally, rather than visually portion of non-class pixels; however, for other classeatiit ¢
and also tend to be highly occluded in the dataset. be a poor t either because they are not box shaped (e.g. a
The choice of object classes, which can be consideregerson with their arms outstretched, a chair) or/and b&caus
a sub-tree of a taxonomy de ned in terms of both semanthey are not axis-aligned (e.g. an aeroplane taking offe Th
tic and visual similarity, also supports research in twaare advantage though is that they are relatively quick to anno-
tate. We return to this point when discussing pixel level an-
5 http://pascallin.ecs.soton.ac.uk/challenges/VOC/ notation in Sect. 3.6.1.

voc2008/ " . .
6 These branches are also found in the Caltech 256 (Grifn et al, In addition, since VOC2006, further annotations were

2007) taxonomy as transportation, animal, household & evergaay  INtroduced which could be used during training but which
human — though the Caltech 256 taxonomy has many other branchegvere not required for evaluation:

3.3 Annotated Attributes




as methods able to cope with such examples are developed.
Furthermore, as noted, any current methods able to detect
dif cult objects are not penalised for doing so.

3.4 Image Annotation Procedure

Im= = O Ez The VOC2007 annotation procedure was designed to be:

— consistent so that the annotation of the images is con-
sistent, in terms of the de nition of the classes, how
bounding boxes are placed, and how viewpoints and
truncation are de ned.

Fig. 3 Example of the “dif cult” annotation. Objects shown in red — accurate so that there are as few annotation errors as
have been marked dif cult, and are excluded from the evaduatNote possible,
that the judgement of dif culty is not solely by object size — tfistant — exhaustive so that all object instances are labelled.

car on the right of the image is included in the evaluation.
Consistency was achieved by having all annotation take

_ ) ) _ place at a single annotation “party” at the University of
— viewpoint: one of: front, rear, left, right, unspeci ed. | geqs, following a set of annotation guidelines which were
This annotation supports methods which treat differengjiscyssed in detail with the annotators. The guidelines cov
viewpoints differently during training, such as using sep-greq aspects including: what to label: how to label pose
arate detectors for each viewpoint. and bounding box; how to treat occlusion; acceptable im-
— truncation: an object is said to be “truncated” when the 446 quality; how to label clothing/mud/snow, transparency
bounding box in the image does not correspond t0 theyirrors, and pictures. The full guidelines (Winn and Ever-
full extent of the object. This may occur for two reasonsijngham 2007) are available on the WWW. In addition, dur-
(@) the object extends outside the image e.g. an image @iq the annotation process, annotators were periodically o
a person from the waist up; (b) the boundary of the oberyeq to ensure that the guidelines were being followed.
jectis occluded e.g. a person standing behind a wall. Thgeyeral current annotation projects rely on untrained anno
aim of including this annotation was to support recogni-iators or have annotators geographically distributedieag.
tion methods which require images of@ntireobjectas  pejMe (Russell et al 2008), or even ignorant of their task e.g
training data, for example assuming that the bounding,e ESP Game (von Ahn and Dabbish 2004). It is very dif-
boxes of the objects can be aligned. cult to maintain consistency of annotation in these cireum

For the VOC2008 challenge, objects are additionally anstances, unlike when all annotators are trained, monitored
notated as “occluded” if a high level of occlusion is presentand co-located.
This overcomes a limitation of the VOC2007 dataset that Following the annotation party, the accuracy of each an-
“clean” training examples without occlusion cannot auto-notation was checked by one of the organisers, including

matically be identi ed from the available annotation. checking for omitted objects to ensure exhaustive latgllin
To date, only one error has been reported on the VOC2007

— dif cult: labels objects which are particularly dif cult dataset, which was a viewpoint marked as unspeci ed rather
to detect due to small size, illumination, image qualitythan frontal. During the checking process, the “dif cult”
or the need to use signi cant contextual information. Inannotation was applied to objects judged as dif cult to
the challenge evaluation, such objects are discarded, alecognise. As checking the annotation is an extremely time-
though no penalty is incurred for detecting them. Theconsuming process, for VOC2008 this has been incorpo-
aim of this annotation is to maintain a reasonable levetated into the annotation party, with each image checked for
of dif Culty while not Contaminating the evaluation with Comp|eteness and each object checked for accuracy, by one
many near-unrecognisable examples. of the annotators. As in previous years, the “dif cult” anno
tation was applied by one of the organisers to ensure consis-
tency. We return to the question of the expense, in terms of
[person hours, of annotation and checking, in Sect. 7.3.

Fig. 3 shows an example of the “dif cult” annotation.
The criteria used to judge an object dif cult included con -
dence in the class label e.g. is it certain that all the arimal
in Fig. 3 are cows? (sometimes we see sheep in the same
eld), object size, level of occlusion, imaging factors e.g 3.5 Dataset Statistics
motion blur, and requirement for signi cant context to en-
able recognition. Note that by marking dif cult examples, Table 2 summarises the statistics of the VOC2007 dataset.
rather than discarding them, the data should remain usefl#or the purposes of the challenge, the data is divided



Table 2 Statistics of the VOC2007 dataset. The data is divided intorhan subsets: training/validation datea{nval ), and test datat€st ),

with thetrainval ~ data further divided into suggested trainimgiq ) and validationyal ) sets. For each subset and class, the number of images
(containing at least one object of the corresponding class) amder of object instances are shown. Note that because images ntainabjects

of several classes, the totals shown in the image columns are not shegym of the corresponding column.

train val trainval test
img obj img obj img obj img obj

Aeroplane 112 151 126 155 238 306 204 285
Bicycle 116 176 127 177 243 353 239 337
Bird 180 243 150 243 330 486 282 459
Boat 81 140 100 150 181 290 172 263
Bottle 139 253 105 252 244 505 212 469
Bus 97 115 89 114 186 229 174 213
Car 376 625 337 625 713 1,250 721 1,201
Cat 163 186 174 190 337 376 322 358
Chair 224 400 221 398 445 798 417 756
Cow 69 136 72 123 141 259 127 244
Dining table 97 103 103 112 200 215 190 206
Dog 203 253 218 257 421 510 418 489
Horse 139 182 148 180 287 362 274 348
Motorbike 120 167 125 172 245 339 222 325
Person 1,025 2,358 983 2,332 2,008 4,690 2,007 4,528
Potted plant 133 248 112 266 245 514 224 480
Sheep 48 130 48 127 96 257 97 242
Sofa 111 124 118 124 229 248 223 239
Train 127 145 134 152 261 297 259 282
Tv/monitor 128 166 128 158 256 324 229 308
Total 2,501 6,301 2,510 6,307 5,011 12,608 4,952 12,032

into two main subsets: training/validation datainval ), class to participants, both for training and evaluatiom; ce
and test datatést ). For participants' convenience, the tain minority classes e.g. “sheep” were targeted toward the
trainval data is further divided into suggested trainingend of the annotation party to increase their numbers — an-
(train ) and validation yal ) sets, however participants are notators were instructed to discard all images not comntgini
free to use any data in theainval set for training, for one of the minority classes. Examples of certain classes e.g
example if a given method does not require a separate valsheep” and “bus” proved dif cult to collect, due either to
idation set. The total number of annotated images is 9,963ack of relevant keyword annotation by ickr users, or lack
roughly double the 5,304 images annotated for VOC20060f photographs containing these classes.

The number of annotated objects similarly rose from 9,507

to 24,640. Since the number of classes doubled from 10 to

20, the average number of objects of each class increas@b Taster Competitions

only slightly from 951 to 1,232, dominated by a quadrupling

of the number of annotated people. Annotation was also provided for the newly introduced-

Fig. 4 shows a histogram of the number of images andnentationand person layoutaster competitions. The idea
objects in the entire dataset for each class. Note that the§ghind these competitions is to allow systems to demon-
counts are shown on a log scale. The “person” class is bgtrate a more detailed understanding of the image, such that
far the most frequent, with 9,218 object instances vs. 42@bjects can be localised down to the pixel level, or an ob-
(dining table) to 2,421 (car) for the other classes. This idect's parts (e.g. a person's head, hands and feet) can be lo-
a natural consequence of requiring each image to be congalised within the object. As for the main competitions, the
p|ete|y annotated — most ickr images can be CharacterisegmphaSiS was on consistent, accurate and exhaustive anno-
as “snapshots” e.g. family holidays, birthdays, parti¢s, e tation.
and so many objects appear only “incidentally” in images
where people are the subject of the photograph. 3.6.1 Segmentation

While the properties of objects in the dataset such as size
and location in the image can be considered representatior the segmentation competition, a subset of images from
of ickr as a whole, the same cannot be said about the freeach of the main datasets was annotated with pixel-level seg
quency of occurrence of each object class. In order to pranentations of the visible region of all contained objects.
vide a reasonable minimum number of images/objects pefhese segmentations act as a re nement of the bounding
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Fig. 5 Example images and annotation for the taster competitions. ap&wation taster annotation showing object and class segnoentati
Border regions are marked with the “void” label indicatingttthey may be object or background. Dif cult objects are edeld by masking with
the “void' label. (b) Person Layout taster annotation showimgnialing boxes for head, hands and feet.

Table 3 Statistics of the VOC2007 segmentation dataset. The data idediinto two main subsets: training/validation dataigval ), and
test datatest ), with thetrainval — data further divided into suggested trainingify ) and validation yal ) sets. For each subset and class, the
number of images (containing at least one object of the correlpgelass) and number of object instances are shown. Note thatiseanages
may contain objects of several classes, the totals shown in the icohg@ns are not simply the sum of the corresponding column. Allatbje
in each image are segmented, with every pixel of the image beligjéal as one of the object classes, “background” (not one cdrthetated
classes) or “void” (uncertain i.e. near object boundary).

train val trainval test
img obj img obj img obj img obj

Aeroplane 12 17 13 16 25 33 15 15

Bicycle 11 16 10 16 21 32 11 15

Bird 13 15 13 20 26 35 12 15

Boat 11 15 9 29 20 44 13 16

Bottle 17 30 13 28 30 58 13 20

Bus 14 16 11 15 25 31 12 17

Car 14 34 17 36 31 70 24 58

Cat 15 15 15 18 30 33 14 17

Chair 26 52 20 48 46 100 21 49

Cow 11 27 10 16 21 43 10 26

Diningtable 14 15 17 17 31 32 14 15

Dog 17 20 14 19 31 39 13 18

Horse 15 18 17 19 32 37 11 16

Motorbike 11 15 15 16 26 31 13 19
Person 92 194 79 154 171 348 92 179

Pottedplant 17 33 17 45 34 78 11 25

Sheep 8 41 13 22 21 63 10 27

Sofa 17 22 13 15 30 37 15 16

Train 8 14 15 17 23 31 16 17

Tvmonitor 20 24 13 16 33 40 17 27
Total 209 633 213 582 422 1,215 210 607

box, giving more precise shape and localisation infornmatio were also provided with detailed guidelines to ensure con-
In deciding how to provide pixel annotation, it was neces-sistent segmentation (Winn and Everingham 2007). In keep-
sary to consider the trade-off between accuracy and anndng with the main competitions, dif cult examples of objsct
tation time: providing pixel-perfect annotation is extelgn ~ were removed from both training and test sets by masking
time intensive. To give high accuracy but to keep the annotahese objects with the “void” label.

tion time short enough to provide a large image set, a border

area of 5 pixels width was allowed around each object where The objectsegmentations, where each pixel is labelled
the pixels were labelled neither object nor backgrouncsghe With the identi er of a particular object, were used to cre-

were marked “void” in the data, see Fig. 5a). Annotatorsate classsegmentations (see Fig. 5a for examples) where
each pixel is assigned a class label. These were provided
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10000 - 4 Submission and Evaluation

I objects

[ images . .

5000 The submission and evaluation procedures for the VOC2007

challenge competitions were designed to be fair, to prevent
over- tting, and to demonstrate clearly the differenceadn
curacy between different methods.

3000+

2000
1500

1000+

4.1 Submission of Results
400
The running of the VOC2007 challenge consisted of two
phases: At the start of the challenge, participants were is-
sued a development kit comprising training/validation im-
ages with annotation, and MATLABsoftware to access the
annotation (stored in an XML format compatible with La-
belMe (Russell et al 2008)), to compute the evaluation mea-
Fig. 4 Summary of the entire VOC2007 dataset. Histogram by class osures, and including simple baseline implementations for
the number_ of objects and images containing at least one olfjf® 0  egch competition. In the second phaseannotatedest im-
corresponding class. Note the log scale. ages were distributed. Participants were then requireatto r
their methods on the test data and submit results as de ned

to encourage participation from class-based methods fwhid Sect. 4.2. The test data was available for approximately
output a class label per pixel but which do not output an obthree months before submission of results — this allowed
ject identi er, e.g. do not segment adjacent objects of theSubstantial time for processing, and aimed to not penalise
same class. Participants' results were submitted in tha for COmputationally expensive methods, or groups with access
of class segmentations, where the aim is to predict the cofo only limited computational resources.

rect class label for every pixel not labelled in the ground  Withholding the annotation of the test data until comple-
truth as “void”. tion of the challenge played a signi cant part in preventing

Table 3 summarises the statistics of the segmentatioPVer- tting of the parameters of classi cation or detegtio
dataset. In total, 422 images containing 1,215 segmented oft€thods. In the VOC2005 challenge, test annotation was
jects were provided in the combined training/validation se released and this led to some “optimistic” reported results

The test set contained 210 images and 607 objects. where a number of parameter settings had been run on the
test set, and only the best reported. This danger emerges

in any evaluation initiative where ground truth is publicly
available. Because the test data is in the form of images, it

For the person layout competition, a subset of “person” Obi_s also theoretically possible for participants to hariaela
. . : ' ... the test data, or “eyeball” test results — this is in conttast
jects in each of the main datasets was annotated with in-

formation about the 2-D pose or “layout” of the person.e'g' machine learning benchmarks where the test data may

B o .-be suf ciently “abstract” such that it cannot easily be la-
For each person, three types of “part” were annotated with L - ,
. ] . belled by a non-specialist. We rely on the participants'-hon
bounding boxes: the head, hands, and feet, see Fig. 5b. Thes o . .
arts were chosen to qive a aood approximation of the oveSY’ and the limited time available between release of the
P 9 g bp test data and submission of results, to minimise the pdssibi

all p(_)se of a person, and because they can be annota'Fed Wi X of manual labelling. The possibility could be avoided by
relative speed and accuracy compared to e.g. annotation o . . . .
requiring participants to submit code for their methods an

“skeleton” structure where uncertainty in the positiontof t . .
: S . . never release the testimages. However, this makes the evalu
limbs and joints is hard to avoid. Annotators selected irsage_. . - S
. . . ation task dif cult for both participants and organisersice
to annotate which were of suf cient size such that there was . .
L o methods may use a mixture of MATLAB/C code, propri-
no uncertainty in the position of the parts, and where the . . S .
- etary libraries, require signi cant computational restes,

head and at least one other part were visible — no other cri- . . .

) e . . etc. It is worth noting, however, that results submittechis t
teria were used to “ lter” suitable images. Fig. 5b shows

. . . . , VOC challenge, rather than afterward using the released an-
some example images, including partial occlusion (upper-

left), challenging lighting (upper-right), and “non-stiard” notation data, might appropriately be accorded higher sta-

pose (lower-left). In total, the training/validation sedne us since participants have limited opportunity to experitn

tained 439 annotated people in 322 images, and the test Sv&th the test data,

441 annotated people in 441 images. 7 MATLAB R is a registered trademark of The MathWorks, Inc.

3.6.2 Person layout
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In addition to withholding the test data annotation, itwas  For a given task and class, the precision/recall curve is
also required that participants submit onlgiagleresult per computed from a method's ranked output. Recall is de ned
method, such that the organisers were not asked to chooas the proportion of all positive examples ranked above a
the best result for them. Participants were not required tgiven rank. Precision is the proportion of all examples @&ov
provide classi cation or detection results for all 20 cless that rank which are from the positive class. The AP sum-
to encourage participation from groups having particukar e marises the shape of the precision/recall curve, and is de-
pertise in e.g. person or vehicle detection. ned as the mean precision at a set of eleven equally spaced

recall leveld0;0:1;:::;1]:
4.2 Evaluation of Results AP= %1 a Pinterp(T) (1)
r2f 0;0:1;:::;1g
Evaluation of results on multi-class datasets such agne precision at each recall levels interpolatedby taking

VOC2007 poses several problems: (i) for the classi ca-the maximum precision measured for a method for which
tion task, images contain instances of multiple classes, s@e corresponding recall exceeds

a “forced choice” paradigm such as that adopted by Cal- B
tech 256 (Grifn et al 2007) — “which one of classes Pinterp(r) = maxp(f) @

does this image contain?” — cannot be used; (ii) the prio(/vherep(r") is the measured precision at reaall ~

d_|str|but|on over classes is signi cantly nonuniform S,o a  The intention in interpolating the precision/recall curve
S|mpleacculracymeasure (.percent.ag.e of cqrrectly cla§S| edin this way is to reduce the impact of the “wiggles” in
examples). is not approprlat.e..Thls is particularly sall.ent the precision/recall curve, caused by small variationfié t
the detection taﬁk’ whedre S:c'd'ng Wlndow me;[hods will enl'ranking of examples. It should be noted that to obtain a high
counter many thousands of negative (non-class) examp %tore, a method must have precision at all levels of recall —

fot: eveLy posﬂwe_e;arppl_e. Iln the at_)senc_e _Of Informatlon(his penalises methods which retrieve only a subset of exam-
about thecostor risk of misclassi cations, it is necessary ples with high precision (e.g. side views of cars).

to gvaluate _th?_ tradT'Off between dlﬁeren;typﬁs OT Cla,sﬁ' The use of precision/recall and AP replaced the “area
cation error; (iii) evaluation measures need to be algorit under curve” (AUC) measure of the ROC curve used in

independent, for e>§ample in the detectiop .task Particg)antVOCZOOG for the classi cation task. This change was made
hgve gdopted a varle.ty of methods e.g. ﬁ"‘?'”g wmdo;/v Clast'o improve the sensitivity of the metric (in VOC2006 many
si cation, segmentation-based, constellation models, et methods were achieving greater than 95% AUC), to improve

Th|sh prevr?nts the use Ef son_:_e %rev]:fouDs Ee_l\_/aluatlon n;eas“rﬁﬁerpretability (especially for image retrieval applicas),
such as the Detection Error Tradeoff ( ) commonly useqo give increased visibility to performance at low recafida

for evaluating pedestrian detectors (Dalal and Triggs ;2,005to unify the evaluation of the two main competitions. A com-

sinc_e thisis applica_ble on_Iy to sliding wi_ndow methods con—parison of the two measures on VOC2006 showed that the
Ztralne.dhto a spzm Ed. yvmdow extracltlon scheme, and tc}anking of participants was generally in agreement but that
ata with cropped positive test examples. the AP measure highlighted differences between methods to

Both the classi cation and detection tasks were eval—a greater extent.

uated as a set of 20 independent two-class tasks: e.g. for

classi cation “is there a car in the image™”, and for detec-gonding hox evaluationAs noted, for the detection task,
tion “where are the cars in the image (if any)?". A separatg g ticipants submitted a list of bounding boxes with associ
“score” is computed for each of the classes. For the claszieq con dence (rank). Detections were assigned to ground
si cation task, participants s.ubm|tted results in the foom _ truth objects and judged to be true/false positives by nreasu
a con dence level for each image and for each class, with, 4 h5unding box overlap. To be considered a correct detec-
larger values indicating greater con dence that the imaggjgn the area of overlap, between the predicted bounding

contains the object of interest. For the detection task, pak . g and ground truth bounding bdy; must exceed 0.5
ticipants submitted a bounding box for each detection, witfl50%)pby the formula

a con dence level for each bounding box. The provision of
a con dence level allows results to be ranked such that the, = ()
trade-off between false positives and false negatives ean b areaBp[ Bgy)
evaluated, without de ning arbitrary costs on each type ofwhereBp\ Byt denotes the intersection of the predicted and
classi cation error. ground truth bounding boxes aig [ Bg: their union.

The threshold of 50% was set deliberately low to account
Average Precision (AP)For the VOC2007 challenge, the for inaccuracies in bounding boxes in the ground truth data,
interpolated average precision (Salton and Mcgill 1986 wafor example de ning the bounding box for a highly non-
used to evaluate both classi cation and detection. convex object, e.g. a person with arms and legs spread, is

area(Bp\ Bg)
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somewhat subjective. Sect. 6.2.3 evaluates the effeciof thso that methods are not required to complete the detection
threshold on the measured average precision. We return frart of the task, but only estimate part identity and logatio
the question of the suitability of bounding box annotation i
Sect. 7.3.

Detections output by a method were assigned to grouné Methods
truth objects satisfying the overlap criterion in orderkeah . o
by the (decreasing) con dence output. Multiple detectionsT@ble 4 summarises the participation in the VOC2007 chal-
of the same object in an image were considered false detelenge. A total of 16 institutions submitted results (c.f.i6
tions e.g. 5 detections of a single object counted as 1 dorre€006 and 9in 2005). Taking into account multiple groups in
detection and 4 false detections — it was the responsibility &n institution and multiple methods per group, there were a
the participant's system to Iter multiple detections frdta total of 28 methods submitted (c.f. 25 in 2006, 13 in 2005).

output.

. . 5.1 Classi cation Methods
4.2.1 Evaluation of the segmentation taster

A common measure used to evaluate Seamentation metp\-bere were 17 entries for the classi cation task in 2007,
ure u vaiu 9 : compared to 14 in 2006 and 9 in 2005.

ods is the percentage of pixels correctly labelled. For the Many of the submissions used variations on the ba-

VOC2007 segmeptatlon ta§ter, this measure was used P§t bag-of-visual-words method (Csurka et al (2004); Sivic
class by considering only pixels labelled with that class in . .

; . and Zisserman (2003)) that was so successful in VOC2006,
the ground truth annotation. Reporting a per-class acgurac

in this way allowed participants to enter segmentation FnethSee Zhang et al (2007): local features are computed (for ex-
y P P 9 ample SIFT descriptors); vector quantised (often by using

ods which handled only a subset of the classes. Howevelg, . . )
. : . . means) into a visual vocabulary or codebook; and each
this evaluation scheme can be misleading, for example, la-

. . Image is then represented by a histogram of how often the
belling all pixels “car” leads to a perfect score on the ca g P y g

r : ;
) o local features are assigned to each visual word. The repre-
class (though not the other classes). Biases in differetitme o 9 . . P
; ; . . sentation is known as bag-of-visual-words in analogy with
ods can hence lead to misleading high or low accuracies on

individual classes. To rectify this problem, the VOC2008 ¢ Pag-of-words (BOW) text representation where the fre-

) . . guency, but not the position, of words is used to represent
segmentation challenge will be assessed on a modi ed per: . .

. . . ext documents. Itis also known as bag-of-keypoints or bag-
class measure based on the intersection of the inferred se

. o . Sf-features. The classi er is typically a support vector-ma
mentation and the ground 'iruth, divided by the union: chine (SVM) withc? or Earth Mover's Distance (EMD) ker-
rue pos

nel.

true pos+ false pos+ false neg & Within this approach, submissions varied tremendously

Pixels marked “void” in the ground truth are excluded in the features used: both their type and their density.s&par
from this measure. Compared to VOC2007, the measure pé&cal features were detected using the Harris interesttpoin
nalises methods which have high false positive rates (i.eoperator and/or the SIFT detector (Lowe 2004), and then
that incorrectly mark non-class pixels as belonging to theepresented by the SIFT descriptor. There was some atten-
target class). The per-class measure should hence givetian to exploring different colour spaces (such as HSI) & th
more interpretable evaluation of the performance of inllivi detection for greater immunity to photometric effects such

seg accuracy=

ual methods. as shadowsRRIP-UvA. Others (e.gINRIA Larlus) com-
puted descriptors on a dense grid, and one submisksiBih)(
4.2.2 Evaluation of the person layout taster combined both sparse and dense descriptors. In addition to

SIFT, other descriptors included local colour, pairs of ad-

The “person layout” taster was treated as an extended d@cent segments (PAS) (Ferrari et al 2008), and Sobel edge
tection task. Methods were evaluated using the same ARistograms.
measure used for the main detection competition. The cri- The BOW representation was still very common, where
terion for a correct detection, however, was extended tspatial information, such as the position of the descriptor
require correct prediction of (i) the set of visible partsis disregarded. However, several participants provided ad
(head/hands/feet); (ii) correct bounding boxes for altgpar ditional representations (channels) for each image where a
using the standard overlap threshold of 50%. well as the BOW, spatial information was included by var-

As reported in Sect. 6.4 this evaluation criterion provedous tilings of the imagelNRIA Geneti¢ INRIA Flat), or
extremely challenging. In the VOC2008 challenge, the evalusing a spatial pyramidlKK).
uation has been relaxed by providing person bounding boxes While most submissions used a kernel SVM as the clas-
for the test data (disjoint from the main challenge test, set)si er (with kernels includingc? and EMD),XRCEused lo-
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Table 4 Participation in the VOC2007 challenge. Each method is asdign@bbreviation used in the text, and identi ed as a classibcatnethod
(Cls) or detection method (Det). The contributors to each nte#ne listed with references to publications describing thénotbtwhere available.

Abbreviation Cls Det Contributors References
Darmstadt - Mario Fritz and Bernt Schiele, Fritz and Schiele (2008)
TU Darmstadt
INRIA Flat - Marcin Marszalek, Cordelia Schmid, Zhang et al (2007); van de Weijer and
Hedi Harzallah and Joost Van-de-weijer, Schmid (2006); Ferrari et al (2008)
INRIA_Genetic - INRIA Rhone-Alpes
CINRIALarlus - Diane Larlus and Frederic Juiie, -
INRIA Rhones-Alpes
INRIANormal - Hedi Harzallah, Cordelia Schmid, Marcin Ferrari et al (2008); van de Weijer and
Marszalek, Vittorio Ferrari, Y-Lan Schmid (2006); Zhang et al (2007)
INRIA PlusClass — Boureau, Jean Ponce and Frederic Jurie,

INRIA Rhone-Alpes

IRISA - Ivan Laptev, IRISA/INRIA Rennes and  Laptev (2006)
Evgeniy Tarassov, TT-Solutions

MPI1_BOW - .
Christoph Lampert and Matthew
MPI_Center - Blaschko, MPI Tuebingen Lampert et al (2008)

MPI_ESSOL -
Oxford - Ondrej Chum and Andrew Zisserman,  Chum and Zisserman (2007)
University of Oxford
PRIPUVA - Julian Stottinger and Allan Hanbury, Stoettinger et al (2007)
Vienna University of Technology; Nicu
Sebe and Theo Gevers, University of
Amsterdam
QMUL_HSLS - Jianguo Zhang, Queen Mary University Zhang et al (2007)
QMUL_LSPCH - of London
TKK Ville Viitaniemi and Jorma Laaksonon,  Viitaniemi and Laaksonen (2008)
Helsinki University of Technology
ToshCanmrdf - Jamie Shotton, Toshiba Corporate R&D —
ToshCamsvm —  Center, Japan & Matthew Johnson,
University of Cambridge
Tsinghua - Dong Wang, Xiaobing Liu, Cailiang Liu, Wang et al (2006); Liu et al (2007)
Zhang Bo and Jianmin Li, Tsinghua
University
UoCTTI - Pedro Felzenszwalb, University of Felzenszwalb et al (2008)
Chicago; David McAllester and Deva
Ramanan, Toyota Technological Institute,
Chicago
UVA Bigrams -
UVA FuseAll - Koen van de Sande. Jan van Gemert and" a" de Sande et al (2008); van Gemert
UVAMCIP =~ Jasper Uiilinas Uni\’/ersit of Amsterdam et al (2006); Geusebroek (2006); Snoek
UVA SFS - per yiings, Y et al (2006, 2005)
UVAWGT -
XRCE - Florent Perronnin, Yan Liu and Gabriela Perronnin and Dance (2007)

Csurka, Xerox Research Centre Europe
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Table 5 Classi cation results. For each object class and submission, the ABuree&%b) is shown. Bold entries in each column denote the
maximum AP for the corresponding class. Italic entries denotesthdts ranked second or third.

X
e N2 o N
N . & N
oQ\QS SIS > Q¥ N 0& @ 0{0& S @bQ\ R o{\\\o
O Y & X o « N & & O & & LK ¥ & & I
£ F© & F ¥ F TS LT EEE S S

INRIA _Flat 748 625 512 694 292 604 763 576 531 41.1 540 4285 7623 845 353 413 50.1 77.6 493
INRIA _Genetic 775 636 56.1 719 331 606 78.0 588 535 426 54.98 4375 64.0 859 36.3 44.750.6 79.2 53.2
INRIA _Larlus 62.6 540 328 475 17.8 464 69.6 442 446 26.0 381 34.00 6651 77.2 131 29.1 36.7 62.7 433

MPI_BOW 589 46.0 31.3 59.0 169 405 67.2 40.2 443 283 319 34.46 6335 757 223 26.6 354 60.6 406

PRIPUVA 48.6 209 213 172 6.4 142 450 314 274 123 143 237 3033 62.0 100 124 133 26.7 26.2
QMUL _HSLS 70.6 548 357 645 278 511 714 540 46.6 36.6 344 39.95 7854 80.6 158 358 415 73.1 455
QMUL _LSPCH 716 550 411 655 272 511 72551 474 359 374 415 715 579 808 156 333 4145 459
TKK 714 517 485 634 273 499 701 512 517 323 46.3 4156 780.2 822 317 30.1 39.2 711 41.0
ToshCam.rdf 599 36.8 299 400 236 333 60.2 330 41.0 178 332 33.79 683.1 779 29.0 273 312 50.1 37.6
ToshCam.svm 540 271 303 356 17.0 223 58.0 346 380 19.0 275 3240 480.7 78.1 234 218 28.0 455 318
Tsinghua 62.9 424 339 49.7 237 40.7 620 352 427 21.0 389 3470 688.1 769 169 30.8 32.8 589 33.1
UVA _Bigrams 61.2 332 294 450 165 376 546 313 399 17.2 314 30.66 6424 746 145 209 235 499 300
UVA _FuseAll 67.1 48.1 433 581 199 46.3 61.8 419 484 278 419 3858 691.4 794 325 319 36.0 66.2 403
UVA_MCIP 66.5 479 410 580 16.8 440 612 405 485 278 41.7 37.14 660.1 786 31.2 323 319 66.6 403
UVA_SFS 66.3 49.7 435 60.7 18.8 449 648 419 46.8 249 423 3395 7834 804 29.7 312 31.8 67.4 435
UVA_WGT 59.7 33.7 349 445 222 329 559 363 36.8 206 252 34.71 680.1 742 264 269 251 507 29.7
XRCE 723 575 532 689 285 575 75403 522 39.0 468 453 757585 84.0 32.6 39.7 50.9 75.1 495

gistic regression with a Fisher kernel (Perronnin and Danc8.2 Detection Methods
2007), andToshCanused a random forest classi er.
There were 9 entries for the detection task in 2007, com-

Where there was greatest diversity was in the methpared to 9 in 2006 and 5 in 2005. As for the classi cation
ods for combining the multiple representations (channels}ask, all submitted methods were trained only on the pro-
Some methods investigated “late fusion” where a classi ewided training data.
is trained on each channel independently, and then a second The majority of the VOC2007 entries used a “sliding
classi er combines the results. For examl&K used this  window” approach to the detection task or variants thereof.
approach, for details see Viitaniemi and Laaksonen (2008)n the basic sliding window method a rectangular window of
Tsinghuacombined the individual classi ers using Rank- the image is taken, features are extracted from this window,
Boost. INRIA entered two methods using the same chanand it is then classi ed as either containing an instance of
nels, but differing in the manner in which they were com-a given class or not. This classi er is then run exhaustively
bined: INRIA_Flat uses uniform weighting on each feature over the image at varying location and scale. In order to deal
(following Zhang et al (2007)INRIA_Geneticuses a differ-  with multiple nearby detections a “non-maximum suppres-
ent class-dependent weight for each feature, learnt frem thsion” stage is then usually applied. Prominent examples of
validation data by a genetic algorithm search. this method include the Viola and Jones (2004) face detector

and the Dalal and Triggs (2005) pedestrian detector.

In 2006, several of the submissions tackled the classi- The entries Darmstadf INRIANormal  IN-
cation task as detection — “there is a car here, so the imRIA PlusClassand IRISAwere essentially sliding window
age contains a car”. This approach is perhaps more in linmethods, with the enhancements tH&RIA PlusClass
with human intuition about the task, in comparison to thealso utilised the output of a whole image classier, and
“global” classi cation methods which establish the presen that IRISAalso trained separate detectors for person-on-X
of an object without localising it in the image. However, in where X was horse, bicycle, or motorbike. Two variations
2007 no submissions used this approach. on the sliding window method avoided dense sampling

of the test image: Thexford entry used interest point

The VOC challenge invites submission of results fromdetection to select candidate windows, and then applied
“off-the-shelf” systems or methods trained on data othean SVM classi er; see Chum and Zisserman (2007) for
than that provided for the challenge (see Sect. 2.1), to bdetails. TheMPI_ESSOLentry (Lampert et al 2008) used a
evaluated separately from those using only the providetiranch-and-bound scheme to ef ciently maximise the clas-
data. No results were submitted to VOC2007 in this catesi er function (based on a BOW representation, or pyramid
gory. This is disappointing, since it prevents answerirgg th match kernel (Grauman and Darrell 2005) determined on a
question as to how well current methods perform given unper-class basis at training time) over all possible windows
limited training data, or more detailed annotation of tiragn The UoCTTl entry used a more complex variant of the
data. It is an open question how to encourage submission sfiding window method, see Felzenszwalb et al (2008) for
results from e.g. commercial systems. details. It combines the outputs of a coarse window and sev-



15

eral higher-resolution part windows which can move retativ 60,

to the coarse window; inference over location of the parts [ ] 527

is performed for each coarse image window. Note that im- 5o 728403480

proved results are reported in Felzenszwalb et al (2008) rel 448444142 o

ative to those in Table 6; these were achieved after thegubli Ty [ 408 0.

release of the test set annotation. SHL .

The method proposed BKK automatically segments
an image to extract candidate bounding boxes and then clas-:
si es these bounding boxes, see Viitaniemi and Laaksonen
(2008) for details. Th&P1_Centerentry was a baseline that
returns exactly one object bounding box per image; the box
is centred and is 51% of the total image area.

In previous VOC detection competitions there had been

30F

Median AP (%)

N
(=]
T

. . . 0
, : <
a greater dlve_rsny of methods used for the dete_ctlon prob & Q@@OQ,/\{_\LQO%@&V\\&\\e & c§®o\\&@>§c5“ < 944:) W
lem, see Everingham et al (2006b) for more details. For ex- VS’QQ\WJF %Vf‘ ‘<°\\>70\\‘>3v3:§\/,\ SOF o7 Q,@Oqg@\‘?
. . . v \g
ample in VOC2006 theCambridgeentry used a classier & st SENN AR &

to predict a class label at each pixel, and then computed o
contiguously segmented regions; tie) Darmstadtentry Fig. 7 Summary of the classi cation results by method. For each
. ' ) method the median AP over all classes is shown.
made use of the Implicit Shape Model (ISM) (Leibe et al
2004); and theMIT_Fergusentry used the “constellation”
model (Fergus et al 2007). classes. The relatd8lRIA Flat method achieves very sim-
ilar performance, with AP between the two methods differ-
ing by just 1-2% for most classes. As described in Sect. 5.1
these methods use the same set of heterogeneous image fea-

This section reports and discusses the results of thté”es’ and differ only in the way that features are fused in a

VOC2007 challenge. Full results including precision/teca generalised radial basis function (RBF) kerrdlRIA Flat

curves for all classes, not all of which are shown here du%:"SeS uniform weighting on each feature, aNRIA Genetic

to space constraints, can be found on the VOC2007 Web(_earnsadifferent weight for each .fea.ture from the valiofati

site (Everingham et al 2007). data}. Th@(RCEmethod comes third in 17 of 20 classes and
rst in one. This method differs from the INRIA methods

in using a Fisher kernel representation of the distributibn

6.1 Classi cation visual features within the image, and uses a smaller feature

set and logistic regression cf. the kernel SVM classi erduse
This section reports and discusses the results of the clagy the INRIA methods.

si cation task. A total of 17 methods were evaluated. All  Fig. 7 summarises the performance of all methods, plot-

participants tackled all of the 20 classes. Table 5 lists thgng the median AP for each method computed over all
AP for all submitted methods and classes. For each class t%SSeS, and ordered by decreasing median AP. Despite
method obtaining the greatest AP is identi ed in bold, andihe overall similarity in the features used, there is quite a
the methods with 2nd and 3rd greatest AP in italics. Preciyige range in accuracy of 32.1-57.5%, with one method
sion/recall curves for a representative sample of clasges apripUvA substantially lower at 21.1%. The high per-
shown in Fig. 6. Results are shown ordered by decreasingrming methods all combine multiple features (channels)
maximum AP. The left column shows all results, while thethough, and somelNRIA Geneti¢ INRIA Flat, TKK) in-

right column shows the top ve results by AP. The left col- cjude spatial information as well as BOW. Software for the
umn also shows the “chance” performance, obtained by feature descriptors used by th&/A methods (van de Sande
classi er outputting a random con dence value without ex- et 3| 2008) has been made publicly available, and would

amining the inputimage — the precision/recall curve and corform a reasonable state-of-the-art baseline for futuré-cha
responding AP measure are not invariant to the proportio[énges_

of positive images, resulting in varying chance perfornganc
across classes. We discuss this further in Sect. 6.1.3.

6 Results

6.1.2 Statistical signi cance of results
6.1.1 Classi cation results by method

A question often overlooked by the computer vision com-
Overall theINRIA_ Geneticmethod stands out as the most munity when comparing results on a given dataset is whether
successful method, obtaining the greatest AP in 19 of the 2the difference in performance of two methods is statidgical
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Fig. 8 Analysis of statistically signi cant differences in the classac
tion results. The mean rank over all classes is plotted om-tas for
each method. Methods which are not signi cantly differgmt( 0:05),
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signi cant. For the VOC challenge, we wanted to establishFig- 9 Summary of classi cgtion results by_class. For each class three

whether, for the given dataset and set of classes, one methé%leur?qse:ir;nsAhgvgetrhglImr:;terolijrz ésegibe:r?)m:r?dbt{]; rXPn;ittg?r?egmb?()a’\

can be considered signi cantly more accurate than anothefandom ranking of the images (chance).

Note that this question is different to that investigatey in

the Caltech 101 challenge, where multiple training/telstso

are used to establish the variance of the measured accurafjethod. Methods are shown clockwise from right to left in

Whereas that approach measures robustness of a methégcreasing (rst to last) rank order. Groups of methods for

to differing data, we wish to establish signi cance for the which the difference in mean rank is not signi cant are con-

given, xed, dataset. This is salient, for example, when ahected by horizontal bars. As can be seen, there is suladtanti

method may not involve a training phase, or to comparéVverlap between the groups, with no clear “clustering” into

against a commercial System trained on proprietary data. sets of equivalent methOdS. Of interest is that the qiﬁ%en
Little work has considered the comparison of multiple P6tween the rst six ranked methodeNRIA Genetic IN-

classi ers over multiple datasets. We analysed the restilts RIA-Flat, XRCE TKK, QMUL LSPCH QMUL.HSLS can-

the classi cation task using a method proposed by DemsafOt b€ considered statistically signi cant. _
(2006), speci cally using the Friedman test with Nemenyi A limitation of th!s analysis is that the relatlvely. small
post hocanalysis. This approach uses only comparisons pdiumber of observations _(20 classes per method) Iw_mts the
tween theank of a method (the method achieving the great-POWer of the_test. Increas!ng the rjumber.of classes will make
est AP is assigned rank 1, the 2nd greatest AP rank 2, etcljmore feasible to establish signi cant differences beswe
and thus requires no assumptions about the distribution ¢f€thods in terms of their performance over a wide range
AP to be made. Each class is treated as a separate test, gij-classes. As discussed in Sect. 7.1, we are also keen to
ing one rank measurement per method and class. The anafjdhlight differences in thepproachtaken by methods, not
sis then consists of two steps: (i) the null hypothesis isenadSClely their performance.
that the methods are equivalent and so their ranks should
be equal. The hypothesis is tested by the Friedman test @1 3 Classi cation results by class
non-parametric variant of ANOVA), which follows@? dis-
tribution; (ii) having rejected the null hypothesis thefelif  Fig. 9 summarises the results obtained by object class, plot
ences in ranks are analysed by the Nemenyi test (similar tgng for each class the maximum and median AP taken over
the Tukey test for ANOVA). The difference between meana|l methods. Also shown is the “chance” performance — the
ranks (over classes) for a pair of methods follows a modAP obtained by a classi er outputting a random con dence
i ed Studentised range statistic. For a con dence level ofyalue without examining the input image. Results are shown
p= 0:05 and given the 17 methods tested over 20 classegrdered by decreasing maximum AP. There is substantial
the “critical difference” is calculated as94- the difference  variation in the maximum AP as a function of object class,
in mean rank between a pair of methods must exce@tb4  from 33.1% (bottle) to 85.9% (person). The median AP
the difference to be considered statistically signi cant. varies from 15.6% (potted plant) to 75.7% (person). The me-
Fig. 8 visualises the results of this analysis using the Cliian results can be seen to approximately follow the ranking
(critical difference) diagram proposed by Demsar (2006)of results by maximum AP, suggesting that the same classes
The x-axis shows the mean rank over classes for eacproved dif cult across methods, but individual differeisce
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can be seen, for example the difference in maximum AP for these are images which “confuse” current methods, which
the 2nd to 4th classes is very small such that the orderingidge them highly likely to contain cars.
is somewhat arbitrary. The high AP for the “person” class  The high ranked positive images (Fig. 10a) include im-
can be attributed in part to the high proportion of images inages where a single car dominates the image, in an un-
the dataset containing people — the chance AP for this clagguttered or “expected” background i.e. a road, and images
is 43.4%. However, as can be seen in Fig. 9, the results agghere a number of cars are visible. The inclusion of images
substantially above chance for all classes. with multiple cars is perhaps surprising, but as discussed
While results on some classes e.g. person and traibelow, may be attributed to the reliance of current meth-
(Fig. 6a—d) are very promising, for all classes there is subeds on “textural” properties of the image rather than spa-
stantial room for improvement. For some classes e.g. bottlgal arrangement of parts. The low ranked positive images
(Fig. 6g—h), the precision/recall curves show that the meth(Fig. 10b) are typical across all classes, showing the tbjec
ods' precision drops greatly at moderate recall, and cuirrerof interest small in the image, poorly lit or heavily occlade
methods would not give satisfactory results in the contéxt oFor methods based on global image descriptors, such as the
an image retrieval system. It is also worth noting that if oneBOW approach, these factors cause the presence of the car
views the classi cation task as image retrieval, the evaluato contribute little to the feature vector describing thega.
tion is somewhat “benign” since the prior probability of an In the case of the car class, the high ranked negative images
image containing an object of interest is still quite higg 2 (Fig. 10c) show an “intuitive” confusion — the rst ve im-
for the least frequent class (sheep). We might expect that iages shown all contain buses or lorries (not considered part
a real world scenario, for example image-based web searcbf the “car” class). This may be considered a pleasing result
the prior probability for some classes would be much lowersince there is some natural fuzziness in the distinction be-
We return to this point in Sect. 7.3. tween the classes “car” and “bus”, and the classes certainly
share both semantic and visual properties. However, as dis-
cussed below, these “natural” confusions are not apparent
6.1.4 What are the classi cation methods learning? for all classes.
Fig. 11 shows the ve highest ranked positive and neg-
As noted, the quantitative evaluation of methods by AP givesaitive images for the “cat” class. Here also the confusion
a summary of a method's precision/recall trade-off. It is in appears natural, with all ve of the highest ranked non-cat
teresting to examine the success and failure modes of thmages containing dogs. However, it can also be seen that
methods to derive some insight into what current methodghe compositiorof the images for the cat and dog classes is
are learning, and what limitations might be addressed in desery similar, and this may play a signi cant role in the lefarn
velopment of future methods. classi ers. This is a bias in the content of ickr images, in
We rst examined the kinds of images which methodsthat photographers appear to take many “close-up” images
found “easy” or “dif cult”. Five submitted methods were of their pets.
selected which represented somewhat different approaches Fig. 12 shows corresponding images for the “bicycle”
rather than small variations (e.¢NRIA Geneticvs. IN-  class. The high ranked positive images show a similar pat-
RIA Flat): INRIA Genetic XRCE TKK, QMUL.LSPCH tern to the “car” class, containing uncluttered images of bi
andUVA FuseAll Each test image was then assigned a rankycles in “canonical” poses, and images where the scene is
by each method (using the method's con dence output foldominated by multiple bicycles. For this class, howeves, th
thatimage). An overall rank for the image was then assignefligh ranked negative images (Fig. 12b) are anything but in-
by taking the median over the ranks from the ve selectedtuitive — all of the rst ve negative images show scenes
methods. By looking at which images, containing the clas®f birds sitting on branches, which do not resemble bicy-
of interest or not, are ranked rst or last, we can gain insighcles at all to a human observer. The reason for this con-
into what properties of the images make recognition easy diusion might be explained by the lack of informative spa-
dif cult for current methods. tial information in current methods. Examining the negativ
Fig. 10 shows ranked images for the “car” class. Thamages (Fig. 12b), which are dominated by “wiry” or bar-
rst row shows the ve positive images (containing cars) as-like features, it seems clear that a BOW representation may
signed the highest rank (1st-5th) — these can be consideretbsely resemble that of a bicycle, with the representaifon
images which are “easy” for current methods to recognise asranches matching that of the bicycle tubes and spokes. This
containing cars. The second row shows the ve positive imdis a limitation of BOW methods, in that information about
ages (containing cars) assigned the lowest rank — these dtee spatial arrangement of features is discarded, or repre-
images for which current methods cannot easily establiseented only very weakly and implicitly, by features repre-
the presence of a car. The third row shows the ve negasenting the conjunction of other features. For methodsgusin
tive images (not containing cars) assigned the highest rartiing or spatial pyramids, the spatial information is aaeid
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(a) car: highest ranked positive images
11 12 14

(b) car: lowest ranked positive images
2989 3019 3658 3802 4049

] % = =
Oe=

(c) car: highest ranked negative images
69 130 150 155 157

Fig. 10 Ranked images for the “car” classi cation task (see text for detfiranking method). (a) ve highest ranked positive images{aming
cars); (b) ve lowest ranked positive images (containing cars); e highest ranked negative images (not containing carsg fiimber in each
image indicates the corresponding median rank.

(a) cat: high ranked positive images
5 6 g 9

(b) cat: high ranked negative images

21 22 49 51

Fig. 11 Ranked images for the “cat” classi cation task. (a) ve highestkad positive images (containing cats); (b) ve highest rankegiative
images (not containing cats). The number in each image indit&erresponding median rank.

(a) bicycle: highest ranked positive images

7

—

] Il

(b) bicycle: highest ranked negative images
28 57 60 76 103

Fig. 12 Ranked images for the “bicycle” classi cation task. (a) ve hagt ranked positive images (containing bicycles); (b) ve hgjtranked
negative images (not containing bicycles). The number in eaelge indicates the corresponding median rank.
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(a) chair: highest ranked positive images
9 12 14 16 17

oo w0 - o0

(b) chair: highest ranked negative images
31 49 51 58 67

Fig. 13 Ranked images for the “chair” classi cation task. (a) ve higheabked positive images (containing chairs); (b) ve highestkezh
negative images (not containing chairs). The number in eacheinmaiicates the corresponding median rank.

(a) person highest ranked positive images

9 9 1

(b) person highest ranked negative images
412 448 481 522 601

Fig. 14 Ranked images for the “person” classi cation task. (a) ve highestked positive images (containing people); (b) ve highesikeal
negative images (not containing people). The number in eacyanmalicates the corresponding median rank.

only at a coarse image/scene level, and not at the level of iment methods are learning object or scene representations i
dividual objects. considered further below.

Finally, Fig. 14 shows images for the “person” class. In
éhis case, the negative images (Fig. 14b) contain (i) dining

Fig. 13 shows images for the “chair” class. Results her bles (3rd and 5th 4 (i bikes (1st. 2nd and
are interesting in that none of the high ranked positive im & es (3rd and 5th image), and (if) motorbikes (1st, 2nd an

ages are close-up views of isolated chairs, eventhougbthe‘s1th images). The confusion with the “dining table” class

are present in the dataset. All the high ranked negative im2cc ' natural, in the same manner as the “chair” class, in

ages (Fig. 13b) show indoor scenes which might well be ext-ﬂat the presen(f:e ofa dlnlng ta?'e, seefmﬁ agood predlctolr fr?r
pected to contain chairs, but do not. Only one of the rst vet e presence of a person. Statistics of the dataset rewal t

negative images contains a sofa, which might be Consideretge presence of a motorbike IS a similarly !affectlve predlq-
or: 68.9% of the images containing motorbikes also contain

the most easily confused class both semantically and visd . ;
ally. It seems likely that in this case the classi ers arehea people (although an alternative explanation may be the-elon

ing about the sceneontextof chairs rather than modelling gated vertical shape of the motorbikes seen from the front or

the appearance of a chair itself. Again, this is a somewha{Far)' These “unintentional” regularities in the dataget a

natural consequence of a global classi cation approach. Th Iimiting factor i!’] judging th? eﬁectivquss of the classi
use of context may be seen in both positive and negativ_&at'on me.thods in terms_obbjectrecogmtlon rather than
lights — while there is much interest in the eld in explogin 'Ma9€ retrieval. Theletectiontask, see Sect. 6.2, is a much

contextual cues to object recognition (Torralba 2003; sug™More challenging test of object recognition.

derth et al 2008; Hoiem et al 2006), the incorporation of

context by use of a global descriptor leads to failure wherg.1.5 Effect of object size on classi cation accuracy

objects are presented out of context, or over-reliance on co

text when the training set contains mostly images of sceneall of the methods submitted are essentiajlpbal, extract-
rather than individual objects. The question of whether curing descriptors of the entire image content. The ranking of
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Fig. 15 Classi cation results as a function of object size. Plots showlted$or four representative classes. For each plobtdaeis shows the
lower threshold on object size for a positive image to be includeide test set; thg-axis shows the corresponding AP. A threshold of 30% means
that all positive images (e.g. containing “car”) which congad fewer than 30% positive (i.e. car) pixels were removed fiwiest set; a threshold

of 0% means that no images were discarded.

images also suggests that the image context is used extdiswer object pixels are discarded, and peaks at the point
sively by the classi ers. Itis interesting therefore to eMae  where the only positive images included have at least 15%
whether methods are biased toward images where the objembject pixels. This effect can be accounted for by the use of
of interest is large, or whether conversely the presencd-of ainterest point mechanisms to extract features, which break
equate scene context determines the accuracy of the resultown if the object is small such that no interest points are
We conducted experiments to investigate the effect ofletected on it, and in the case of dense feature extractjon, b
object size on the submitted methods' accuracy. A series dhe dominance of the background or clutter in the global rep-
test sets was made in which all positively-labelled imagesesentation, which “swamps” the object descriptors. Fer th
contained at least some proportion of pixels labelled as th&motorbike” class, the AP is seen to decrease slightly when
object of interest. For example, given a threshold of 10%pnly images containing at least 20% of object pixels are in-
only images for which at least 10% of the pixels were “car”cluded — this may be explained by the reduction of relevant
were labelled as containing a car; images with some car pixeontext in such images.
els, but less than 10%, were removed from the test set, and
the negative examples always had zero car pixels. The pro-
portion of pixels belonging to a particular class was approx  For most classes, zero or negative correlation between
imated by the union of the corresponding bounding boxesobject size and AP was observed, for example “bird”, shown
Fig. 15 shows results of the experiments for a represestativin Fig. 15c. This is compatible with the conclusions from
set of classes. For each plot, tkhe@xis shows the threshold examining ranked images, that current methods are making
on the proportion of positive pixels in an image for the im- substantial use of image composition or context. For some
age to be labelled positive, de ning one of the series of testlasses, e.g. “chair”, shown in Fig. 15d, this effect is guit
sets. For each threshold, the AP was measured and is showramatic — for this class the learnt classi ers are very poor
on they-axis. at recognising images where chairs are the dominant part of
Fig. 15a/b show classes “car” and “motorbike”, for the scene. These results are in agreement with the ranked
which some positive correlation between object size and Almages shown in Fig. 13b, suggesting a reliance on scene
can be observed. As shown, the AP increases as images witbntext.
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marginally lower tharKRCEon the VOC2007 data, but con-

—V0C2006 j._ Iﬂilﬁzgi‘neﬂc vincingly better results on the VOC2006 data.
0 M [onghua However, for all methods the performance on the
£ e 4 x UVA:FugseAII VOC2006 data is less than on VOC2007, by 5.08¢-(
o o O uacr RIA_FLAT) to 12.7% Tsinghud. This implies that methods
8 50 O UVA WGT have failed to generalise to the VOC2006 data to some ex-
g B O XRee tent. There are two possible reasons: (i) there is fundamen-
g a0 + tally insuf cient variability in the VOC2007 data to gener-
o ‘ X alise well to the VOC2006 data; (ii) the classi ers have ever
30 t some “peculiarities” of the VOC2007 data which do not
apply to the VOC2006 data. Factors might include the dif-
% 30 40 50 60 70 80 ference in the time of year of data collection (see Sect. 3.1)

2007: Median AP (3) A possible concern might be that the better results obtained

Fig. 16 Comparison of classication results on VOC2006 vs. on VOC2006 are due to the presence of “near-duplicate”
VOC2007 test sets. All methods werained on the VOC2007 train- images spanning the training/test sets. This possibilag w

ing/validataion set. The median AP over the 10 classes commontothe. =~ . db . hi h he d
VOC2006/VOC2007 challenges is plotted for each method asid te minimised by removing such images when the dataset was

set. The line marked VOC2006 indicates the best result obtaimiei  collected (see Sect. 3.1).

VOC2006 challenge, trained using tMOC2006training/validation Tested on the VOC2006 data, the maximum median-

set. AP achieved by a method submitted in 2007 was 62.1%
compared to 74.5% in 2006. This again suggests either that

6.1.6 Classi cation results on the VOC2006 test set the 2007 methods over- t some properties of the VOC2007

data, or that there were peculiarities of the VOC2006 data

In order to gauge progress since the 2006 VOC challeng&hich methods trained on that data in 2006 were able to ex-
participants in the 2007 challenge were asked to additiorPloit. One such possibility is the inclusion of the MSR Cam-
ally submit results on th#OC2006dataset. Since the train- bridge images in the VOC2006 data (see Sect. 3.1) which
ing phase for many methods is computationally expensivenay have provided a “boost” to 2006 methods learning their
for example requiring multiple cross-validation runs,tj;ar ~ SPeci ¢ viewpoints and simple scene composition.

ipants were asked to submit results trained usi@fC2007

data i.e. not requiring re-training. This allows us to answe

two questions: (i) do methods which perform well on the6_2 Detection

VOC2007 test set also perform well on VOC2006 test set?

(if) do newer methods trained on VOC2007 data outperformyg section reports and discusses the results of the detec-
older methods trained on VOC2006 data? tion task. A total of 9 methods were evaluated. Six partici-

Participants submitted classi cation results on both tesbants tackled all of the 20 classes, with the others submit-
sets for 9 methods. Fig. 16 summarises the results.xThe {ing results on a subset of classes. Table 6 lists the APffor al
axis show the median AP over all classes on the VOC200¢,pmitted methods and classes. For each class the method
test set. They-axis shows the median AP over all classesgptaining the greatest AP is identi ed in bold, and the meth-
on the VOC2006 test set. The line labelled "VOC2006" in-ogs with 2nd and 3rd greatest AP in italics. Precision/fecal
dicates the best result reported in the 2006 challenge. Notg,rves for a representative sample of classes are shown in
that since the median is taken over the 10 classes comm@fyy 17
to the 2006 and 2007 challenges (see Fig. 2), the ranking of
methods does not match that shown in Fig. 7, for example
the XRCE method outperforms thiNRIA methods on the 6.2.1 Detection results by method
VOC2007 data for this subset of classes.

As the gure shows, there is very high correlation be-It is dif cult to judge an overall “winner” in the detec-
tween the results on the VOC2006 and VOC2007 data. Thigon task because different participants tackled diffesei-
suggests that methods performing well on VOC2007 arsets of classes (this is allowed under the rules of the chal-
“implicitly” more successful, rather than obtaining go@d r lenge).Oxford won on all 6 (vehicle) classes that they en-
sults due to excessive tting of the statistics of the VOC200 tered,UoCTTIwon on 6 classes, aPl_ESSOlon 5. The
data. There are small differences in the ranking of method€)xford method achieved the greatest AP for all of the six
for example theXRCE method is 1st on YOC2007 (over classes entered, with the AP substantially exceeding thie se
the subset of 10 classes common to both challenges) bohd place result, by a margin of 4.0-11.4%. TheCTTI
3rd on VOC2006. ThéNRIA Geneticmethod gives results method entered all 20 classes, and came rst or second in
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Table 6 Detection results. For each object class and submission, the AP rag&sus shown. Bold entries in each column denote the maximum
AP for the corresponding class. Italic entries denote the esaiftked second or third. Note that some participants submitsedtsdor only a
subset of the 20 classes.
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Fig. 17 Detection results. Precision/recall curves are shown for a&sepitative sample of classes. The legend indicates the AP (Yohetbtay
the corresponding method.

14.MPI_ESSOlalso entered all 20 classes, but it is notice-pected that the use of interest points and a xed grid repre-
able that on some classes the AP score for this method &entation might limit the applicability to classes with iied
poor relative to other entries. distinguishing features or signi cant variability in shap
These methods differ quite signi cantly in approach: e.g. animals.
Oxford used interest point detection to select candidate de- Promising results were obtained by all methods, but
tection regions, and applied an SVM classi er using a spawith results for each method varying greatly among the ob-
tial pyramid (Lazebnik et al 2006) representation to the canject classes. It seems clear that current methods are more
didate region; theJoCTTI method used a sliding window or less suited to particular classes. An example is the fail-
approach, but with a “star” model of parts; aiPl_ ESSOL  ure of theUoCTTI method on the “dog” class (AP=2.3)
used an SVM classi er based on a BOW or spatial pyramidcompared to theMPI_ESSOLmethod (AP=16.2). While
representation of the candidate window. the former emphasises shape, the latter uses a BOW/spatial
It would have been particularly interesting to see resultpyramid representation which might better capture texture
of the Oxford method on all classes, since it might be ex-but captures shape more coarsely. ConverselyW@eTTI
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Fig. 19 Effect of the bounding box overlap threshold on the AP mea-
sure. For the class “car”, on which the submitted methods gave the
ey SO 3¢ & best results, AP is plotted as a function of the overlap thresfdid

< threshold adopted for the challenge is 50%.

Fig. 18 Summary of detection results by class. For each class two val-
ues are shown: the maximum AP obtained by any method (max) and

the median AP over all methods (median). Such classes have quite predictable visual propertiel, wit
distinctive parts e.g. wheels, and relatively xed spa#al

method obtains good results on “bottle” (AP=21.4), wherd@ngement of parts. For classes with ;igni cant variation i
it is expected that shape is a very important feature, anah‘_'jlpe or appearance €.g. pgople (Fig. 17c) and household
theMPI_ESSOLmethod fails (AP=0.1). The trained detector objects (Wh'Ch are often signi Ca”t'Y occluded), resulte a
used by thaJoCTTI method (Felzenszwalb et al 2008) hassubstantlally worse. Results on the important “personssla

been made publicly available, and would form a reasonabl¥€"®: however quite promising overall. The best results in
state-of-the-art baseline for future challenges. terms of AP on this class were obtained by tRéSAand

UoCTTI methods. As noted in Sect. 5.2 tHRISAmethod
trained multiple person detectors, for example “person on
horse/person on bicycle”. THdoCTTI method is also po-
. . . . tentially better able to deal with varying articulation, iy
F'g' 18 summarises the resglts obtained by object class, pIOapproach of simultaneous “pose” inference and detection.
ting for each class the maximum and median AP taken over
all methods. Results are shown ordered by decreasing maxi- For several classes the results are somewhat counterin-
mum AP. It should be noted that, because some participantaitive, for example good results are obtained on the “train
only submitted results for some classes, the number of reelass (max AP=33.4%) which might be expected to be chal-
sults available varies for each class. There is substaatial  lenging due to the great variation in appearance and aspect
ation in the maximum AP as a function of object class, fromratio with pose. The results for this class may be explained
9.4% (boat) to 43.2% (car). The median AP varies fromby the inclusion of several methods which exploited whole
2.8% (boat) to 29.4% (car). The median results can be seémage classi cation -MPI_Center which predicts a sin-
to approximately follow the ranking of results by maximum gle detection per image of xed size, atdRIA PlusClass
AP. which combines sliding window detection with a global
Results on some classes e.g. car/bicycle (Fig. 17a-b) aassi er. Because trains tend to appear large in the image,
quite promising, with the best performing methods obtainthese global methods prove successful on this data, how-
ing precision close to 100% for recall up to 15-20%. How-ever it is notable that th®xford method also did well for
ever, precision drops rapidly above this level of recallisTh this class. For the “horse” class, the good results may be
suggests that methods are retrieving only a subset of exarattributable to unwanted regularities in the dataset, lwvhic
ples with any accuracy, perhaps the “canonical” views (e.gincludes many images of horses taken by a single photog-
car side, car rear). A challenge for future methods is to inrapher at a single gymkhana event. Such regularities will
crease the recall. In the related domain of face detectiobe reduced in the VOC2008 dataset by distributing searches
the move from frontal-only detection to arbitrary pose hasover time, as noted in Sect. 3.1. Results for the classes with
proved challenging. low AP, for example boat (Fig. 17d) leave much scope for
It can be seen from Fig. 18 that the best results weréamprovement, with precision dropping to zero by 20% re-
obtained for classes which have traditionally been investicall. The VOC2007 dataset remains extremely challenging
gated in object detection, e.g. car, bicycle and motorbikefor current detection methods.

6.2.2 Detection results by class
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(a) car true positivesOxford method
| | [: | |
(b) car true positivesUoCTTI method
1 2 3 4
D D D -
[ D
(c) car true positivesIRISAmethod
2 3 4 5
e
Fig. 20 Highest ranked true positive detections for the “car” detectask. The ve highest ranked true positives are shown for eatedhree
methods with greatest AP. The number in each image indicateankeof the detection.

(a) bicycle true positivesOxford method

(b) bicycle true positivesUoCTTImethod

4 5
(c) bicycle true positivesINRIA_PlusClasamethod

1 2 3 4 5
Fig. 21 Highest ranked true positive detections for the “bicycle’edtiobn task. The ve highest ranked true positives are showndohef the
three methods with greatest AP. The number in each image inditteeank of the detection.

6.2.3 Evaluation of the overlap threshold by the submitted methods. One caveat applies: participants
were aware of the 50% threshold, and were therefore free to
As noted in Sect. 4.2, detections are considered true poscln_ptimise their ”.‘th“_'S atthis th_reshold, fqr example iirthe
tives if the predicted and ground truth bounding boxes over§Chemes for elimination of multiple detections.
lap by 50% according to the measure de ned in Egn. 3, with  As Fig. 19 shows, the measured AP drops steeply for
the threshold of 50% set low to account for uncertainty inthresholds above 50%, indicating that none of the methods
the bounding box annotation. We evaluated the effect thgive highly accurate bounding box predictions. Reducing
overlap threshold has on the measured AP by varying thehe threshold to 10% results in an increase in measured AP
threshold. Fig. 19 shows AP as a function of the overlapf around 7.5%. Note that for all but one pair of methods
threshold for the class “car”, on which the best results (iDarmstadtandINRIA_PlusClas$ the ordering of methods

terms of AP with overlap threshold of 50%) were obtainedby AP does not change for any threshold in the range 0-50%
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(a) bicycle false positivesOxford method

52 78 D ) 98

(b) bicycle false positivestJoCTTI method

20 65 66 I 86

(c) bicycle false positivestNRIA_PlusClassmethod
93 103 109 119 D

Fig. 22 High ranked false positive detections for the “bicycle” détat task. The false positives shown are in images wimerbicycles are
present. The number in each image indicates the rank of thetideteResults are shown for the three methods with greatest AP.

(a) motorbike false positivesOxford method

58 61! ‘ 70 \ 72 [Gj

(b) motorbike false positivesoCTTI method

3 14 27

==

(c) motorbike false positivestNRIA_PlusClassnethod
| D SOD | |
Fig. 23 High ranked false positive detections for the “motorbike” d&ten task. The false positives shown are in images wheraotorbikes are
present. The number in each image indicates the rank of thetideteResults are shown for the three methods with greatest AP.

(the AP of these two methods at a threshold of 50% differdimitations might be addressed in the development of future
by only 0.7%). We conclude that the measure is performingnethods.

satisfactorily, capturing the proportion of objects dételc
without overly penalising imprecise bounding box predic-
tions.

Each detection method provides a list of bounding boxes
ranked by the corresponding con dence output. We present
some of the highest ranked true positive (object) and false
positive (non-object) detections here. Since the detectio
6.2.4 What are the detection methods learning? methods varied greatly in approach and success, as mea-

sured by AP, we present individual results for selected
As in the classi cation task it is interesting to examine theclasses and methods. For a given class, we present results of
success and failure modes of the methods to derive sontke three methods giving greatest AP. The classes selected
insight into what current methods are learning, and whatvere those where results are particularly promising, or in-
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(a) personfalse positivestRISAmethod

59 109 145 147

1 oy 0 QO

) personfalse positivestJoCTTI method
176 203 228

(b
124 129
(c) personfalse positivestNRIA_Normalmethod
4 6
Fig. 24 High ranked false positive detections for the “person” detectask. The false positives shown are in images whegeople are present.
The number in each image indicates the rank of the detectisulRere shown for the three methods with greatest AP.

8 10

(a) person“near misses”’IRISAmethod
11 17 26 28 33

(b) person“near misses”UoCTTI method
1 49

51 54 57
(c) person“near misses”INRIA_Normalmethod
| SD | D | D
Fig. 25 “Near miss” false positives for the “person” detection task. The isaghown contain people, but the detections do not satisfy th@ VO
overlap criterion. The number in each image indicates the odithe detection. Results are shown for the three methods wethigst AP.

15

teresting observations can be made e.g. confusion betweéigh con dence. However, for the “bicycle” class shown
“motorbike” and “bicycle”. in Fig. 21, the most successful metho@xford UoCTTI
andINRIA_PlusClas3 all return side views of bicycles with

Fig. 20 shows the ve highest ranked true positive de- . ) :
tections for the “car” class. The methods shown, obtain-h'ghest con dence. For theJoCTTI method in particular

ing greatest AP, ar©xford, UoCTTI and IRISA As can :Eere ;iﬁmz.notprefe;er?c&f?r I.eft (t))r rlglh t f?cmlgﬁt;lcyécles,
be seen th@®xford method has a preference for large ob- ough the bias toward right facing bicycles Tor or

jects (Fig. 20a) which is less apparent for the other twomethOd may be a statistical bias in the dataset.

methods (Fig. 20b/c). We analyse this bias toward large ob- We turn now to the false positive detections — bound-
jects further in the next subsection. For this class, there iing boxes which do not correspond to an object of interest.
no apparent preference for a particular viewpoint or “as+or each class and method we show high-ranked false posi-
pect” — the methods all return cars with varying pose ative detections. To increase the diversity of results presk
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we have ltered the images shown: (i) images watily (un-  ture. The fth false positive output by théRISA method
detected) object of interest have been removed, though s€€ig. 24a) is interesting (motorbike panniers occluded by
discussion of the “person” class below; (ii) only the mostanother motorbike) and is most likely an artefact of that
con dent false positive detection per image is shown. Formethod learning separate “person on X” detectors.
example in Fig. 22b, multiple high con dence false posisive Thus far the false positives shown exclude images where
were output for the 3rd image due to the repeated structureany object of interest is present. Fig. 25 shows false pos-

Fig. 22 shows false positives for the “bicycle” class out-itives for the “person” class, where peopdee present in
put by theOxford, UoCTTlandINRIA PlusClassmethods. the image. These represent “near miss” detections where the
All methods generated some “intuitive” false positives onpredicted bounding box does not meet the VOC overlap cri-
motorbikes, though in many such cases the predicted bountgrion of 50%. As noted, this class presents particular-chal
ing box does not correspond to the full extent of the objectlenges because of the high variability in pose and articula-
It is interesting to observe that several of the false pasiti tion. As can be seen in Fig. 25a/b, the localisation of these
for the Oxford method are the same images of tree brancheflse positives for théRISAandUoCTTImethods is gener-
which confused the classi cation methods (Fig. 12b). Thisally quite good, e.g. the top of the bounding box matches the
may be explained by the pyramid representation of spatidpp of the head, and the person is horizontally centred in the
information in this method or by the method learning thebounding box. The failure modes here are mainly inaccurate
strong gradients of the frames (if you squint you can se@rediction of the vertical extent of the person (Fig. 25a and
a frame in the second and fourth images of Fig. 22a). FoFig. 25b, 1st and 2nd image) due e.g. to occlusion, and fail-
the UoCTTI method, the false positives were observed taure on non-frontal poses (Fig. 25b, 1st and 5th images). This
often resemble the side-view of a bicycle as “two blobs horis a limitation of current methods using xed aspect ratio
izontally aligned” (Fig. 22b, 3rd and 4th image). The mostbounding boxes, which is a poor model of the possible im-
con dent false positive output by this method is actually aaged appearance of a person. The false positive in Fig. 253,
drawing of a bicycle on a traf ¢ sign, not labelled as “bi- 1st image, is accounted for by the “person on X” approach
cycle” according to the annotation guidelines. For tNe  taken by thelRISAmethod. The high ranked near misses
RIA PlusClassmethod, 4 of the 5 highest con dence false output by thdNRIA Normalmethod (Fig. 25¢c) mostly cover
positive images contain motorcycles, however the poor premultiple people, and might be accounted for by capturing
diction of bounding boxes in these cases suggest that tHgerson “texture” but not layout.
scene context introduced by the incorporation of a global As noted in Sect. 4.2.2, in the 2007 challenge we intro-
image classi er in this method may be a factor, rather than g&luced a “person layout” taster to further evaluate the tgbili
“natural” confusion between the classes. of person detectors to correctly “parse” images of people,

Fig. 23 shows corresponding high ranked false positive@nd motivate research into methods giving more detailed in-
for the “motorbike” class, with the same methods as for thderpretation of scenes containing people.

“bicycle” class shown. For theloCTTI method, 4 out of 5

false positives are bicycles, with the remaining false posig.2.5 Effect of object size on detection accuracy

tive shown covering a pair of car wheels. These results sug-

gest that this method is really capturing something aboul\s in the classi cation task, it is interesting to investiga
the dominant shape of the motorbike. TB&ford method  how object size affects the accuracy of the submitted de-
outputs two bicycles in the rst ve false positives, and the tection methods, particularly for those such as @ord
INRIA PlusClassmethod outputs one. The remaining high method which makes use of interest point detection, which
ranked false positives for these two methods are dif cult tomay fail for small objects, and tH&IRIA PlusClassnethod
explain, consisting mainly of highly cluttered scenes withwhich combines sliding window detection with a whole im-
little discernable structure. age classi er.

Fig. 24 shows high ranked false positives for the “per-  We followed a corresponding procedure to that for the
son” class, with the three most successful methods showlassi cation task, creating a series of test sets in which
IRISA UoCTTI and INRIA.Normal This class is partic- all objects smaller than a threshold area were removed
ularly challenging because of the high variability in hu-from consideration. For the detection task, this was done by
man pose exhibited in the VOC dataset. As can be seeadding a “dif cult” annotation to such objects, so that they
it is dif culty to see any consistent property of the false count neither as false positives or negatives. Fig. 26 shows
positives. Some bias toward “elongated vertical” struesur results of the experiments for a representative set ofetass
can be observed e.g. trees (Fig. 24a) and dogs in a frontebr each plot, the-axis shows the threshold on object size,
pose (Fig. 24b), and more of these were visible in lowers a proportion of image size, for an object to be included
ranked false positives not shown. However, many false posn the evaluation. For each threshold, the AP was measured
itives seem to be merely cluttered windows with strong tex-and is shown on thg-axis.



29

AP (%)

70

60

50

10 15 20 25 30
min area (%)

(a) car

IRISA
Darmstadt
INRIA_PlusClass
INRIA_Normal
— — T TKK
MPI_Center
MPI_ESSOL

AP (%)

60

50

40

10 15 20 25
min area (%)

(b) motorbike

— — — Oxford

— = ~ UoCTTI
INRIA_PlusClass
IRISA
MPI_ESSOL
MPI_Center
INRIA_Normal
— T T TKK

Fig. 26 Detection results as a function of object size. Plots show efuittwo representative classes. For each ploithgis shows the lower
threshold on object size for an object to be included in the tastlsey-axis shows the corresponding AP. A threshold of 30% means that al
objects smaller than 30% of the image area were ignored in theatian (contributing neither true nor false positives); a#fold of 0% means
that no objects were ignored.

As Fig. 26 shows, all submitted methods have lower APsults on the VOC2006 dataset, trained using the VOC2007
for very small objects below around 2% image area. For thelata.
“car” class (Fig. 26a), the accuracy of most methods does Participants submitted classi cation results on both test
not increase if objects less than 5% area are removed frosets for 3 methods. Table 7 summarises the results, showing
the evaluation, indicating limited preference for large ob the AP (%) obtained for each method, class and test set. The
jects. For thelNRIA_ Normal and IRISA methods the AP nal row shows the maximum AP obtained by any method
can be seen to fall slightly with increasing object size, in-in the 2006 challenge, trained on ti®C2006data. Since
dicating that some highly ranked correct detections are foparticipants submitted results for different subsetsaésés,
small objects. For the “motorbike” class (Fig. 26b), the  the results have not been summarised e.g. by median AP as
RIA PlusClassand MPI_ESSOLmethods peak for objects in the classi cation task.
above around 17% image area, IR€SAandUoCTTImeth- For all but one class the ranking of methods by AP is
ods show no clear preference for large objects, and AP fathe same for the VOC2007 and VOC2006 datasets, suggest-
all other methods increases monotonically with object.sizeing that methods performing well on VOC2007 are “intrin-

Three methods show substantial correlation between olsically” more successful, rather than obtaining good tesul
ject size and APMPI_Center MPI_ESSOLlandOxford The  due to excessive tting of the statistics of the VOC2007 data
MPI_Centermethod outputs a xed bounding box with area For the “cat” class, theJoCTTImethod comes rst and the
51% of the image, and con dence determined by a globaOxford method second, reversing the order on VOC2007,
image classi er. This clearly biases results to images wherbut the difference in AP is small (53.5% vs. 55.5%).
most of the image is covered by the object of interest, and Particularly encouraging is the observation that for 7 out
while an interesting baseline (as intended), is not a suof 10 classes a method submitted in 2007 achieves greater
cessful strategy since many of the objects in the dataset afd than any of the 2006 methods. THeCTTI method ex-
small. TheMPI_ESSOLmethod has two aspects which may ceeds the 2006 results on 7 of the 10 classes entered, the
bias it toward larger objects: (i) it combines a whole imageOxford method on all four classes entered, and HRESA
classi er with a sliding window detector to “score” detec- method on 4 of the 8 classes entered. The improvement
tions; (i) it incorporates a log Gaussian prior on objezesi is substantial, e.g. 19.1% AP on the “bus” cla&xford)
t by maximum likelihood to the training data, and this prior and 9.8% on the “person” clasgd§CTTI). While it is pos-
may have biased results toward large objects. Oéord  sible that the improvement is due to the VOC2007 train-
method relies on scale-invariant interest point operatwors ing/validation data being more “useful”, this effect wag no
provide candidate detections, and the lack of interesttpoin observed for the classi cation task. It therefore seemalyik
on small objects may explain the correlation between its acthat the results represent measurable progress in object de
curacy and object size. tection.

6.2.6 Detection results on the VOC2006 test set 6.3 Segmentation

As in the classi cation task, participants in the detectiask  All participants in the detection challenge were automati-
of the 2007 challenge were asked to additionally submit reeally entered into the segmentation challenge by deriving
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Table 7 Comparison of detection results on VOC2006 vs. VOC2007 test sdtmethods werdrained on the VOC2007 training/validataion

set. The AP measure (%) is shown for each method, class, and test satalltev (VOC2006) lists the best result obtained in the VOC2006
challenge, trained using th&0C2006training/validation set. Bold entries denote the maximum ARefich dataset and class. Bold entries in the
nal row indicate where results obtained in 2006 exceededétmbtained in 2007.

N
F oo N ) £ S R
FO N & & & &0“0 Qz‘% ¥
IRISA 28.1 - 318 26 119 —-28.9 22.7 221 175
Teston 2007  Oxford 409 393 432 - - - -375 - -
UoCTTI 369 232 346 98 140 23 182 276 213 143
IRISA 35.2 - 482 94 209 -18.3 333 21.1 262
Teston 2006  Oxford 56.8 36.0 53.5 - - -  —-539 - -
UoCTTI 56.2 23.6 555 10.3 21.2 9.917.3 439 262 221
VOC2006 Best 44.0 169 444 160 252 11.8 140 39.0 164 251
Image Ground truth Kohli et al TKK (a) correct localisation
(b) incorrect localisation
!ﬂ
Fig. 27 Example segmentation results. Columns show: test images, = =) =
ground truth annotations, segmentations from Kohli et al (2G0®I
segmentations derived from the bounding boxes offtKK detection (3] (=] O E]
method.

. . . Fig. 28 Example person layout results for tannheimmethod. For
a segmentation from the inferred bounding boxes (overeach image the ground truth bounding boxes are shown in white, a

laps were resolved heuristically). In addition, only onethe predicted bounding boxes colour-coded: yellow for theand
segmentation-speci ¢ method was submitted, by Lubofcyan for “hand”.

Ladicky, Pushmeet Kohli and Philip Torr of Oxford Brookes

University (Kohli et al 2008). Example segmentations fromgq, some images, where the person is in a “canonical”

this team and from th&KK automatic entry are shown in frontal pose, the method successfully localises the parts
Fig. 27. The best overall performance was given by one ofrig. 28a). For more varied poses, the method fails to ptedic
the “automatic” participants (segmentation derived &tBer  the correct locations, or confuses hands and feet (Fig. 28b)
mically from detection), most likely due to an un nished pegpite some correct results, the ranking of results by the
segmentation-only entry. In future challenges, it is antic method's con dence output is poor, such that the measured
pated that methods which are optimised for the segmentayp is zero. This raised the question of whether the evalua-
tion problem will outperform automatic detection entrigs.  jon criterion adopted for VOC2007 is suf ciently senséiv

any case, providing a challenge which directly compares desnq as described in Sect. 4.2.2, the requirements for the per

tection and segmentation methods should help encourage igg |ayout taster have been relaxed for the VOC2008 chal-
novation in how to combine these two types of methods tqgpge,

best effect.

7 Discussion and the Future
6.4 Person Layout

The VOC challenge has already had a signi cant, and we
Only one result was submitted for the person layout tastehelieve positive, impact in terms of providing a rich, stan-
by Martin Bergtholdt, drg Hendrik Kappes and Christoph dardised dataset for the community and an evaluation frame-
Schrorr of the University of Mannheim (Bergtholdt et al work for comparing different methods. Participation in the
2006). Fig. 28 shows some example results for this methodathallenges has increased steadily since their rst inteadu
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tion, as has the use of the VOC dataset beyond the challendje contrast, datasets for which performance is “saturated”
itself. For example, in CVPRO7 the VOC dataset was refare likely to encourage ne tuning of implementation detail
erenced in 15 papers; in CVPRO08 this number increased tather than fundamental progress, and such progress may be
27, i.e. almost a year-to-year doubling of the dataset's popunmeasurable, being lost in the noise.

ularity. To retain this popularity, the challenge must &eol A fundamental question is whether the VOC challenges
to meet the requirements and address the criticisms of th&re probing for the right kind of tasks. In a recent paper,
research community. In the following sections we discus®into et al (2008) criticised the use of “natural” images al-
some criticisms of the challenge, look at how the challengeogether, arguing for the use of synthetic data (e.g. resttler
is evolving through the taster competitions, and suggest dBD models) for which one has better control over the vari-
rections in which the dataset and challenge can be improveability in the data — parameter settings can be sampled lat wil
and extended in the future. and annotation is not needed, as perfect ground truth ik avai
able by design. In their view, this is a much better way to
generate the variability that is needed to critically testg-
nition performance. This issue of whether to use natural im-

No benchmark remains without criticism for long, and thed9es of completely control imaging conditions is an ongo-

VOC challenge has not been an exception. A common ogng debate in the psychophysics community. In our case, the

jection raised about any competition of this sort is that:_VOC datasets have been designed to contain large varyabilit

“Datasets sti e innovation, because the community concen!! POS€ |Ilgm|nat|on, occlusion, etc. Moreover, correlas )
trates effort on this data to the exclusion of others”. WhileNat occur in the real world are captured, whereas synthetic
it is dif cult to avoid this effect completely, if the chalfeye datasets cannot be expected to re ect those faithfully.
is well ahead of capabilities then it will not necessarilyest
the types of methods used. Datasets have a shelf life, and as
performance starts to saturate a new one is needed to drive2 Taster competitions
research. Conversely, it is also necessary for dataseés to r
main consistent, so that they can be used to gauge progrekBe taster competitions, which make demands of methods
made by the community. Assessing progress is dif cult if quite far ahead of the state-of-the-art, aim to play a key par
the test (and training) set are different every time the-chalin encouraging fundamental research progress. These were
lenge is run. The VOC challenge aims to meet these apntroduced in 2007 to encourage both diversity of approach
parently contradictory goals of innovation and consisgenc and the development of more powerful methods to address
by introducing separate “taster” challenges to promote rethese more demanding tasks. For example, the segmentation
search in new directions (see the next section), whilerretai competition not only requires much more precise localisa-
ing the existing classi cation and detection competitises  tion of objects than the detection task, but it has also been
that progress can be consistently tracked. set up to allow either detection-based or segmentatioaebas
Fostering innovation is also a question of the attitudeapproaches to be used. The hope is that the two approaches
of the community as a whole: it is important that we doare complementary, so that detection methods can be used
not discourage novel approaches to object recognition sinfo improve segmentation performance and vice-versa. This
ply because they do not yet achieve the greatest successkgief is justi ed by the similar situation which has alrgad
measured by our benchmarks. High methodological noveltrisen between the classi cation and detection tasks, evher
must not be sacri ced on the altar of benchmark rankingglobal image classi cation has aided detection perforneanc
and this is the last thing the VOC challenge is intended tdsee Sect. 5.2). By encouraging participants to blend tee be
achieve. An important part of encouraging novel methods igispects of different methodologies, a greater diversigpsf
our selection of speakers for the annual challenge workshoproaches will be encouraged.
where we have given time to both particularly successful, It is inevitable that any challenge is very much of its
and particularly interesting methods. time, only testing what can be thought of by current prac-
A further criticism raised against the VOC series oftitioners, governed by current methods and hardware, and to
challenges in particular is that the level of dif culty is some extent unaware of these limitations. Through the use
too high, thereby obscuring the way forward. However,of the taster competitions, the VOC challenge is being up-
methods submitted in 2007 for the detection task demondated to allow a broader range of approaches and to address
strated substantial improvements over those submitted imore current research issues. However, it is recogniséd tha
2006 (see Sect. 6.2.6). We are of the opinion that providinghe challenge must continue to adapt and remain agile in
researchers with such challenging, yet natural, data i onlresponding to the needs and concerns of the growing com-
stimulating progress. It is the very fact of being well aheadmunity of researchers who use the datasets and participate
of current capabilities which makes the dataset so usefuin the competitions.

7.1 Criticisms
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7.3 The Future Beyond nounsincreasingly, vision researchers are forging
strong links with text analysis, and are exploiting toolsmeo

In the area of object class recognition, a lot of progress isng from that area such as WordNet (Fellbaum 1998). Part

being made and the requirements for a benchmark evolwef this endeavour is to build vision systems that can ex-

quickly with this evolution. Here we give a non-exhaustiveploit and/or generate textual descriptions of scenes. This

list of aspects which could be improved or added in futureentails bringing objects (nouns) in connection with action

VOC challenges. (verbs) and attributes (adjectives and adverbs). As pssgre
in this direction continues, it will be appropriate to indice

) _ ~_ benchmarks for methods producing richer textual descrip-
More object classesA rst and rather obvious extension is inn« of a scene than the “noun + position” outputs which

to increase the number of annotated object classes. A priye cyrrently typical. The interest in methods for expiaiti
mary goal here is to put more emphasis on the issue Qhyya) description at training time also suggests altarea

scalability — running as many detectors as there are objegfeakerforms of annotation for the dataset than bounding
classes may not remain a viable strategy, although this is by, <. \we discuss this further below.

far the dominant approach today. Different aspects of detec

tion schemes may become important, for example the abilScene dynamicsThus far, the VOC challenge has focused
ity to share features between classes (Torralba et al 200@ntirely on classifying and detecting objects in still ireag

or exploit properties of multiple “parent” classes (Zehnde (also the case for VOC2008). Including video clips would
et al 2008). Introducing more classes would also stimuexpand the challenge in several ways: (i) as training data
late research in discrimination between more visually simit would support learning richer object models, for example
ilar classes, and in exploiting semantic relations betweeBD or “multi-aspect”. Video of objects with varying viewing
classes, for example in the form of a class hierarchy. Howeirection would provide relations between parts implicitl
ever, increasing the number of classes will also pose addavailable through tracking; (i) as test data it would eeabl
tional dif culties to the running of the VOC challenge: () i evaluation of new tasks: object recognition from video (e.g
will prove more dif cult to collect suf cient data per class people), and recognition of actions. This would also bring
(ii) it raises questions of how to annotate objects acciyate the VOC challenge into the domain of other benchmarks,
for example labelling an object as “van” vs. “truck” is of- e.g. TRECVID which includes an “interactive search” task
ten subjective; (iii) evaluation of recognition must be mor with increasing emphasis on events/actions such as “a door
exible, for example a method might assign a class frombeing opened” or “a train in motion”.

f hatchbackcar, vehicleg and be assigned varying “scores” . S
dependent on accuracy or level of detail. Alternative annotation method$4anual annotation is time-

consuming and therefore expensive. For example, annota-

tion of the VOC2008 dataset required around 700 person
Object parts.VOC2007 introduced annotation of body hours. Moreover, since the VOC challenge runs annually,
parts in order to evaluate and encourage development efew test data is required each year in order to avoid par-
methods capable of more detailed image annotation thaicipants having access to the ground truth annotations and
object location alone. Such more detailed indication of thepver- tting on the test set. Increasing the level of annota-
parts of objects is an important direction to pursue. Alffou tion, for example by increasing the number of classes, only
many techniques today start from local features, these feanakes annotation more time-consuming.
tures typically have very little to do with the semantic gart We also found that when increasing the number of
of the objects. However, often the purpose of object detecelasses, from 10 in 2006 to 20 in 2007, annotators made
tion and recognition is to support interaction with objectsmany more mistakes as they failed to hold in memory the
(e.g. in robotics). A good understanding of where parts argomplete set of classes to be annotated. This in turn regjuire
(arms, wheels, keyboards, etc.) is often essential to mak@ore time to be allocated to checking and correction to en-
such practical use of object recognition, and should berinco sure high quality annotation. This raises several question
porated into at least a component of the evaluation schemeoncerning: how the annotation format relates to ease-of-

Thus far, VOC has con ned itself to object classes andannotation, how much agreement there is between different

annotation where “discrete” objects can be identi ed. Withhuman annotators e.g. on bounding box position, and how
the introduction of the segmentation taster, it is natusal t the annotation tools affect annotation quality. To date, we
also include “stuff” classes (grass, sky, etc.) and additiiy =~ have not yet gathered data during the checking process that
consider annotation of classes which can appear as “stufitould help answer these questions and this is something we
in the distance e.g. “person” vs. “crowd” — images contain-aim to rectify in future years. Annotating pixel-wise seg-
ing such ambiguities are currently omitted from the VOCmentations instead of bounding boxes puts even higher pres-
dataset. sure on the sustainability of manual annotation. If object
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parts, attributes and especially video are to be added in fue James Philbin, Ondra Chum, and Felix Agakov for addi-
ture, then the method of annotation will certainly need tational assistance.

evolve in concert with the annotation itself. Possibistia- Finally we would like to thank the anonymous reviewers
clude recruiting help from a much larger pool of volunteersfor their detailed and insightful comments.

(in the footsteps of LabelMe), combined with a centralised

effort to check quality and make corrections. We are also

investigating the use of systems like Mechanical Turk to

recruit and pay for annotation (Sorokin and Forsyth 2008References
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